1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadya68 [22]
2 years ago
7

In a playground, there is a small merry-go-round of radius 1.20 m and mass 160 kg. Its radius of gyration is 91.0 cm. (Radius of

gyration k is defined by the expression I=Mk2.) A child of mass 44.0 kg runs at a speed of 3.00 m/s along a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate
Physics
1 answer:
aksik [14]2 years ago
7 0

Answer:

a) 145.6kgm^2

b) 158.4kg-m^2/s

c) 0.76rads/s

Explanation:

Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation 

(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and

(c) the angular speed of the merry-go-round and child after the child has jumped on.

a) From I = MK^2

I = (160Kg)(0.91m)^2

I = 145.6kgm^2

b) The magnitude of the angular momentum is given by:

L= r × p The raduis and momentum are perpendicular.

L = r × mc

L = (1.20m)(44.0kg)(3.0m/s)

L = 158.4kg-m^2/s

c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:

L = Iw

158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]

w = 158.6/208.96

w = 0.76rad/s

You might be interested in
Which do you think will penetrate farther into a block of lead, x-rays, or gamma rays
disa [49]
Gamma rays because it has more penetrating power and frequency but shorter wavelength.
3 0
3 years ago
The half-life of the radioactive isotope Carbon-14 is about 5730 years. Find N in terms of t. The amount of a radioactive elemen
Fudgin [204]

The complete queston is The amount of a radioactive element A at time t is given by the formula

A(t) = A₀e^kt

Answer:  A(t) =N e^( -1.2 X 10^-4t)

Explanation:

Given

Half life =  5730 years.

A(t) =A₀e ^kt

such that

A₀/ 2 =A₀e ^kt

Dividing both sides by A₀

1/2 = e ^kt

1/2 = e ^k(5730)

1/2 = e^5730K

In 1/2 =  5730K

k = 1n1/2 / 5730

k = 1n0.5 / 5730

K= -0.00012 = 1.2 X 10^-4

So that expressing   N in terms of t, we have

A(t) =A₀e ^kt

A₀ = N

A(t) =N e^ -1.2 X 10^-4t

7 0
3 years ago
Four pairs of objects have the masses as described below, along with the distances between
lord [1]

Answer:

<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>

Explanation:

The gravitational force is defined as

F=G\frac{m_{1} m_{2} }{r^{2} }

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.

Among the options, the pair that would have the greatest gravitational force is  Mass of 1 Kg and 2 Kg, with 1 meter between them.

Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.

Therefore, the right answer is the second choice.

7 0
3 years ago
Assume your mass is 60 kg. The acceleration due to gravity is 9.8 m/s 2 . How much work against gravity do you do when you climb
Andre45 [30]

Answer:

W=1705.2 J

Explanation:

Given that

mass ,m= 60 kg

Acceleration due to gravity ,g= 9.8 m/s²

Height ,h= 2.9 m

As we know that work done by a force given as

W = F . d

F=force

d=Displacement

W=work done by force

Now by putting the values

F= m g (Acting downward  )

d= h  (Upward)

W= m g h    ( work done against the force)

W= 60 x 9.8 x 2.9 J

W=1705.2 J

Therefore the answer will be 1705.2 J.

8 0
3 years ago
3. A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of
Alex Ar [27]

Answer:

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.

Explanation:

Given that,

The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.

A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.

We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.

Using Snell's law for red light as :

n_1\sin\theta_1=n_2\sin\theta_2\\\\\theta_2=\sin^{-1}((\dfrac{n_2}{n_1})\sin\theta_1)\\\\\theta_2=\sin^{-1}((\dfrac{1}{1.4561})\sin(80))\\\\\theta_2=42.555

Again using Snell's law for blue light as :

n_1\sin\theta_1=n_2\sin\theta'_2\\\\\theta'_2=\sin^{-1}((\dfrac{n_2}{n_1})\sin\theta_1)\\\\\theta'_2=\sin^{-1}((\dfrac{1}{1.4636 })\sin(80))\\\\\theta'_2=42.283

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.

7 0
3 years ago
Other questions:
  • Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
    12·1 answer
  • What is the speed of light?
    9·2 answers
  • Help!!!!!!!!!!!!!!!!!plz!!!!!!!!!!!!!!!!!!!!!
    10·2 answers
  • A 58-kg skater is standing still in front of a wall. By pushing against the wall she propels herself backward with a velocity of
    9·1 answer
  • 27N-(u)(14kg)(9.8m/s^2)=0
    12·1 answer
  • 20 POINTS!! What does this picture look like ???
    8·1 answer
  • Why does a buoyant force act on every object in a fluid?
    10·1 answer
  • To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth.
    9·1 answer
  • Your total calorie _____ is an estimation of how many calories you burn when you exert yourself. A.Moderate B.Conditions C.Expen
    7·1 answer
  • An archer fires an arrow at an angle of 9° above the horizontal with a resultant velocity of 24 m/s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!