Answer:
less than
Step-by-step explanation:
If

, then
![\sqrt[2]{y}=\sqrt[2]{x^2}=x](https://tex.z-dn.net/?f=%5Csqrt%5B2%5D%7By%7D%3D%5Csqrt%5B2%5D%7Bx%5E2%7D%3Dx)
if

, then
![\sqrt[3]{y}=\sqrt[3]{x^3}=x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%7D%3D%5Csqrt%5B3%5D%7Bx%5E3%7D%3Dx)
ok

so
![\sqrt[2]{64}=\sqrt[2]{8^2}=8](https://tex.z-dn.net/?f=%5Csqrt%5B2%5D%7B64%7D%3D%5Csqrt%5B2%5D%7B8%5E2%7D%3D8)
![\sqrt[3]{64}=\sqrt[3]{4^3}=4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%3D%5Csqrt%5B3%5D%7B4%5E3%7D%3D4)
well, the cube root usually bigger
Answer:
We subtract exponents when diving powers with the same base because they eventually get canceled out when written in expanded form.
Step-by-step explanation:
For example, if we expand the given fractions:
10^3/10^1 = 1000/10 = 100 = 10^2
Now, if we subtract the exponents we get the same result.
10^3-1 = 10^2
So, a^m/a^n = a^m-
n is one of the exponent rules which saves time and makes calculation easier.
The Answer is b. Hope that helps