Answer:
Distance traveled during this acceleration will be 6950 m
Explanation:
Wear have given maximum speed tat will be equal to final speed of the car v = 278 m/sec
Constant acceleration 
As the car starts initially starts from rest so initial velocity of the car u = 0 m/sec
From third equation of motion 
Putting all values in equation

s = 6950 m
So distance traveled during this acceleration will be 6950 m
Answer:
a) the magnitude of r is 184.62
b) the direction is 37.74° south of the negative x-axis
Explanation:
Given the data in the question;
as illustrated in the image blow;
To find the the magnitude of r, we will use the Pythagoras theorem
r² = y² + x²
r = √( y² + x²)
we substitute
r = √((-113)² + (-146)²)
r = √(12769 + 21316 )
r = √(34085 )
r = 184.62
Therefore, the magnitude of r is 184.62
To find its direction, we need to find ∅
from SOH CAH TOA
tan = opposite / adjacent
tan∅ = -113 / -146
tan∅ = 0.77397
∅ = tan⁻¹( 0.77397 )
∅ = 37.74°
Therefore, the direction is 37.74° south of the negative x-axis
Force = (mass) x (acceleration)
= (0.025 kg) x (5 m/s²)
= 0.125 Newton
Answer:
14
Explanation:
EWAN KO LANG DIN BASTA YAN ALAM KO
There are many porperties. You can use Altitude, Temperature, Pressure and Density, but the best one is temperature. The resaon for that is that based on the temperature changes then the athmosphere can be broken into four major layers. Remember that the layers are the following: <span>the </span>troposphere,the<span> </span>stratosphere, <span>the </span>mesosphere<span>, and the</span>thermosphere<span>.</span>