Answer is: ph value is 3.56.
Chemical reaction 1: H₂CO₃(aq) ⇄ HCO₃⁻(aq) + H⁺(aq); Ka₁ = 4,3·10⁻⁷.
Chemical reaction 2: HCO₃⁻(aq) ⇄ CO₃²⁻(aq) + H⁺(aq); Ka₂ = 5,6·10⁻¹¹.
c(H₂CO₃) = 0,18 M.
[HCO₃⁻] = [H⁺<span>] = x.
</span>[H₂CO₃] = 0,18 M - x.
Ka₁ = [HCO₃⁻] · [H⁺] / [H₂CO₃].
4,3·10⁻⁷ = x² / (0,18 M -x).
Solve quadratic equation: x = [H⁺] =0,000293 M.
pH = -log[H⁺] = -log(0,000293 M).
pH = 3,56; second Ka do not contributes pH value a lot.
The half-life equation is written as:
An = Aoe^-kt
We use this equation for the solution. We do as follows:
5.5 = 176e^-k(165)
k = 0.02
<span>What is the half-life of the goo in minutes?
</span>
0.5 = e^-0.02t
t = 34.66 minutes <----HALF-LIFE
Find a formula for G(t) , the amount of goo remaining at time t.G(t)=?
G(t) = 176e^-0.02t
How many grams of goo will remain after 50 minutes?
G(t) = 176e^-0.02(50) = 64.75 g
Oh that’s crazy I need help
<span>The rate of reaction may be expressed as a unit of quantity divided by a unit of time. The only expression that has a quantity divided by time is the first one mL / s (i.e. milliliter per second), so the answer is the first option, mL/s.</span><span />