Answer:
1.73 m/s²
3.0 cm
Explanation:
Draw a free body diagram of the yo-yo. There are two forces: weight force mg pulling down, and tension force T pulling up 10° from the vertical.
Sum of forces in the y direction:
∑F = ma
T cos 10° − mg = 0
T cos 10° = mg
T = mg / cos 10°
Sum of forces in the x direction:
∑F = ma
T sin 10° = ma
mg tan 10° = ma
g tan 10° = a
a = 1.73 m/s²
Draw a free body diagram of the sphere. There are two forces: weight force mg pulling down, and air resistance D pushing up. At terminal velocity, the acceleration is 0.
Sum of forces in the y direction:
∑F = ma
D − mg = 0
D = mg
½ ρₐ v² C A = ρᵢ V g
½ ρₐ v² C (πr²) = ρᵢ (4/3 πr³) g
3 ρₐ v² C = 8 ρᵢ r g
r = 3 ρₐ v² C / (8 ρᵢ g)
r = 3 (1.3 kg/m³) (100 m/s)² (0.47) / (8 (7874 kg/m³) (9.8 m/s²))
r = 0.030 m
r = 3.0 cm
Answer:
An aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Explanation:
Applying Bernoulli's equation, we determine the highest pressure on the aircraft.

where;
P is the highest pressure on the aircraft
is the density of air = 1.204 kg/m³ at sea level temperature.
V is the velocity of the aircraft = 220 m/s
P = 0.5*1.204*(220)² = 29136.8 N/m²
Therefore, an aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
The time it takes for the Moon to rotate once around its axis is equal to the time it takes for the Moon to orbit once around Earth
Answer:
Because it is made by two different unit force (F) and displacement(s)