Answer:
0.0002 C.
Explanation:
Charge: This can be defined as the ratio of current to time flowing in a circuit. The S.I unit of charge is Coulombs (C)
Mathematically, charge can be expressed as
Q = CV ................................. Equation 1
Where Q = amount of charge, C = capacitance of the capacitor, V = potential difference across the plates.
Given: C = 2.0-μF = 2×10⁻⁶ F, V = 100 V.
Substitute into equation 1
Q = 2×10⁻⁶× 100
Q = 2×10⁻⁴ C
Q = 0.0002 C.
The amount of charge accumulated = 0.0002 C
Answer:
Time zone is one important factor in difference in location and this in turn affects the result of the resolution and rotation of shadow produced from the sun or other illumination.
Therefore someone at a place might see a clear large shadow due to shinny sun reflection and another a small or dull Shadow at same time if the intensity of the sun or lighting source is going down.
Explanation:
The closer a body/object is to a lighting source the larger the shadow it produces, and the farther the body the smaller the shadow produced.
Answer:
V_f = 287.04 mL
Explanation:
We are given the initial/original volume of the glycerine as 285 mL.
Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;
V_f = V_i (1 + βΔT)
Where;
V_f is the final volume
V_i is the original volume = 285 mL
β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)
Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C
Thus, plugging in relevant values;
V_f = 285(1 + (5.97 × 10^(-4) × 12))
V_f = 287.04 mL
Potassium hydroxide (KOH) and
hydrochloric acid (HCl) react in a beaker. They form potassium chloride (KCl)
and water (H2O). This type of reaction is a double replacement reaction wherein
the two principal reactants exchange after the reaction. The Cl will combine to
the K forming KCl and the H will add to the OH forming H2O.