Hi there!
We can use the equation:
d = x₀ + vt, where:
x₀ = initial distance from the reference point
v = velocity (m/s)
t = time (sec)
Plug in the given values:
d = 248 + 5(49)
d = 493m
The way in which the sample of participants is obtained from the experimental technique
Answer:
1) 5.52 cm , C) 5.5 cm
Explanation:
When a measurement is carried out, in addition to the value of the magnitude, the error or uncertainty of the measurement must occur, in a direct measurement with an instrument the uncertainty is equal to the appreciation of the instrument.
Uniform see the errors by the number of significant figures days, in this cases they are two decimals for which the appreciation of the instrument ± - 0.01
now we can analyze the measurements made
1) 5.52 cm. Validate. It is a valid measurement is within the uncertainty range
2) 6.63 cm. It does not validate. It is out of the error range
3) 5.5 cm Valid. It is within the given error range,
4) 5.93 cm Not Valid. It is out of the error range.
Answer:
The motion of the lighter child would look faster than that of the heavier child, but both have the same period of oscillation.
Explanation:
Oscillation is a type of simple harmonic motion which involves the to and fro movement of an object. The oscillation takes place at a required time called the period of oscillation.
Since the swings are similar, the period of oscillation of the two children are the same and they would complete one oscillation in the same time. Though the oscillation of the lighter child seems faster than that of the heavy child, their masses does not affect the period of oscillation.
When a heavy object oscillates, its mass increases the drag or damping force, but not the period of oscillation. Thus, it oscillate slowly.
The resulting positive amplitude of the two waves after the superimposition is 4.30 cm.
<h3>
Amplitude of the waves</h3>
The amplitude of the waves is the maximum displacement of the wave. This is the vertical position of the wave measured from the zero origin.
After the superimposition of the two similar waves, the resulting amplitude will be less than the initial amplitude of the wave with the highest vertical height since the superimposition creates destructive interference.
Resulting amplitude of the two waves is calculated as;
A = 5.4 cm - 1.10 cm
A = 4.30 cm
Thus, the resulting positive amplitude of the two waves after the superimposition is 4.30 cm.
Learn more about amplitude of waves here: brainly.com/question/25699025