Answer:
displacement= 30 m towards south, distance= 210m
Explanation:
Distance (scalar quantity) how much ground an object has covered.
Displacement (vector quantity) refers to how far out of place an object is it is the object's overall change in position.
Basically meaning for displacement the directions will be very key
D for Displacement
D= D1+D2
D= 120 (S) + 90 m (N)
Must be in same direction
D= 120 (S) + (-90 m) (S)
D= 30 m (S)
and for distance you are simply just adding how much distance they have covered
so d= d1+d2
d= 90m + 120m
d= 210m
Input energy is: 200 joule
Output energy is: 100 joule
100/200*100=%50 efficiency
Answer:
2) twice the amplitude and half the wavelength
Explanation:
Answer:
a
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
b
Explanation:
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
When
we have that

=> 
=>
Answer:
A. Mass
Explanation:
Inertia of an object is the resistance of the object to any change in its state of motion: it means that if an object is at rest, it tends to stay at rest for inertia (unless a net force acts on it), and if it is moving, it tends to continue moving with the same velocity, for inertia.
The inertia also describes how difficult it is to stop/accelerate an object, and it is directly proportional to the mass of the object: in fact, the larger the mass of an object, the more difficult it is to change its state of motion, and this means it has greater inertia.