Answer:
Check below, please
Step-by-step explanation:
Hello!
1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this
![x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}](https://tex.z-dn.net/?f=x_%7B1%7D%3D2%5C%5Cx_%7B2%7D%3D2-%5Cfrac%7Bf%282%29%7D%7Bf%27%282%29%7D%3D2.5%5C%5Cx_%7B3%7D%3D2.5-%5Cfrac%7Bf%282.5%29%7D%7Bf%27%282.5%29%7D%5Capprox%202.4166%5C%5Cx_%7B4%7D%3D2.4166-%5Cfrac%7Bf%282.4166%29%7D%7Bf%27%282.4166%29%7D%5Capprox%202.41421%5C%5Cx_%7B5%7D%3D2.41421-%5Cfrac%7Bf%282.41421%29%7D%7Bf%27%282.41421%29%7D%5Capprox%20%5Cmathbf%7B2.41421%7D)
2) Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.
We can rewrite it as: ![x^2-2x-4=0](https://tex.z-dn.net/?f=x%5E2-2x-4%3D0)
![x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}](https://tex.z-dn.net/?f=x_%7B1%7D%3D-1.1%5C%5Cx_%7B2%7D%3D-1.1-%5Cfrac%7Bf%28-1.1%29%7D%7Bf%27%28-1.1%29%7D%3D-1.24047%5C%5Cx_%7B3%7D%3D-1.24047-%5Cfrac%7Bf%281.24047%29%7D%7Bf%27%281.24047%29%7D%5Capprox%20-1.23607%5C%5Cx_%7B4%7D%3D-1.23607-%5Cfrac%7Bf%28-1.23607%29%7D%7Bf%27%28-1.23607%29%7D%5Capprox%20-1.23606%5C%5Cx_%7B5%7D%3D-1.23606-%5Cfrac%7Bf%28-1.23606%29%7D%7Bf%27%28-1.23606%29%7D%5Capprox%20%5Cmathbf%7B-1.23606%7D)
As for
![x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\](https://tex.z-dn.net/?f=x_%7B1%7D%3D3.2%5C%5Cx_%7B2%7D%3D3.2-%5Cfrac%7Bf%283.2%29%7D%7Bf%27%283.2%29%7D%3D3.23636%5C%5Cx_%7B3%7D%3D3.23636-%5Cfrac%7Bf%283.23636%29%7D%7Bf%27%283.23636%29%7D%5Capprox%203.23606%5C%5Cx_%7B4%7D%3D3.23606-%5Cfrac%7Bf%283.23606%29%7D%7Bf%27%283.23606%29%7D%5Capprox%20%5Cmathbf%7B3.23606%7D%5C%5C)
3) Rewriting and calculating its derivative. Remember to do it, in radians.
![5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1](https://tex.z-dn.net/?f=5%5Ccos%28x%29-x-1%3D0%20%5C%3Aand%20f%27%28x%29%3D-5%5Csin%28x%29-1)
![x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}](https://tex.z-dn.net/?f=x_%7B1%7D%3D1%5C%5Cx_%7B2%7D%3D1-%5Cfrac%7Bf%281%29%7D%7Bf%27%281%29%7D%3D1.13471%5C%5Cx_%7B3%7D%3D1.13471-%5Cfrac%7Bf%281.13471%29%7D%7Bf%27%281.13471%29%7D%5Capprox%201.13060%5C%5Cx_%7B4%7D%3D1.13060-%5Cfrac%7Bf%281.13060%29%7D%7Bf%27%281.13060%29%7D%5Capprox%201.13059%5C%5Cx_%7B5%7D%3D%201.13059-%5Cfrac%7Bf%28%201.13059%29%7D%7Bf%27%28%201.13059%29%7D%5Capprox%20%5Cmathbf%7B%201.13059%7D)
For the second root, let's try -1.5
![x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\](https://tex.z-dn.net/?f=x_%7B1%7D%3D-1.5%5C%5Cx_%7B2%7D%3D-1.5-%5Cfrac%7Bf%28-1.5%29%7D%7Bf%27%28-1.5%29%7D%3D-1.71409%5C%5Cx_%7B3%7D%3D-1.71409-%5Cfrac%7Bf%28-1.71409%29%7D%7Bf%27%28-1.71409%29%7D%5Capprox%20-1.71410%5C%5Cx_%7B4%7D%3D-1.71410-%5Cfrac%7Bf%28-1.71410%29%7D%7Bf%27%28-1.71410%29%7D%5Capprox%20%5Cmathbf%7B-1.71410%7D%5C%5C)
For x=-3.9, last root.
![x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\](https://tex.z-dn.net/?f=x_%7B1%7D%3D-3.9%5C%5Cx_%7B2%7D%3D-3.9-%5Cfrac%7Bf%28-3.9%29%7D%7Bf%27%28-3.9%29%7D%3D-4.06438%5C%5Cx_%7B3%7D%3D-4.06438-%5Cfrac%7Bf%28-4.06438%29%7D%7Bf%27%28-4.06438%29%7D%5Capprox%20-4.05507%5C%5Cx_%7B4%7D%3D-4.05507-%5Cfrac%7Bf%28-4.05507%29%7D%7Bf%27%28-4.05507%29%7D%5Capprox%20%5Cmathbf%7B-4.05507%7D%5C%5C)
5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.
![x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}](https://tex.z-dn.net/?f=x_%7Bn%2B1%7D%3Dx_%7Bn%7D-%5Cfrac%7Bf%27%28n%29%7D%7Bf%27%27%28n%29%7D)
![\mathbf{f'(x)=6x^5-4x^3+9x^2-2}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%27%28x%29%3D6x%5E5-4x%5E3%2B9x%5E2-2%7D)
![\mathbf{f''(x)=30x^4-12x^2+18x}](https://tex.z-dn.net/?f=%5Cmathbf%7Bf%27%27%28x%29%3D30x%5E4-12x%5E2%2B18x%7D)
For -1.2
![x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx \mathbf{-1.29322}\\](https://tex.z-dn.net/?f=x_%7B1%7D%3D-1.2%5C%5Cx_%7B2%7D%3D-1.2-%5Cfrac%7Bf%27%28-1.2%29%7D%7Bf%27%27%28-1.2%29%7D%3D-1.32611%5C%5Cx_%7B3%7D%3D-1.32611-%5Cfrac%7Bf%27%28-1.32611%29%7D%7Bf%27%27%28-1.32611%29%7D%5Capprox%20-1.29575%5C%5Cx_%7B4%7D%3D-1.29575-%5Cfrac%7Bf%27%28-1.29575%29%7D%7Bf%27%27%28-4.05507%29%7D%5Capprox%20-1.29325%5C%5Cx_%7B5%7D%3D%20-1.29325-%5Cfrac%7Bf%27%28%20-1.29325%29%7D%7Bf%27%27%28%20-1.29325%29%7D%5Capprox%20%20-1.29322%5C%5Cx_%7B6%7D%3D%20-1.29322-%5Cfrac%7Bf%27%28%20-1.29322%29%7D%7Bf%27%27%28%20-1.29322%29%7D%5Capprox%20%20%5Cmathbf%7B-1.29322%7D%5C%5C)
For x=0.4
![x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx \mathbf{0.50785}\\](https://tex.z-dn.net/?f=x_%7B1%7D%3D0.4%5C%5Cx_%7B2%7D%3D0.4%5Cfrac%7Bf%27%280.4%29%7D%7Bf%27%27%280.4%29%7D%3D0.52476%5C%5Cx_%7B3%7D%3D0.52476-%5Cfrac%7Bf%27%280.52476%29%7D%7Bf%27%27%280.52476%29%7D%5Capprox%200.50823%5C%5Cx_%7B4%7D%3D0.50823-%5Cfrac%7Bf%27%280.50823%29%7D%7Bf%27%27%280.50823%29%7D%5Capprox%200.50785%5C%5Cx_%7B5%7D%3D%200.50785-%5Cfrac%7Bf%27%280.50785%29%7D%7Bf%27%27%280.50785%29%7D%5Capprox%20%20%5Cmathbf%7B0.50785%7D%5C%5C)
and for x=-0.4
![x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\](https://tex.z-dn.net/?f=x_%7B1%7D%3D-0.4%5C%5Cx_%7B2%7D%3D-0.4%5Cfrac%7Bf%27%28-0.4%29%7D%7Bf%27%27%28-0.4%29%7D%3D-0.44375%5C%5Cx_%7B3%7D%3D-0.44375-%5Cfrac%7Bf%27%28-0.44375%29%7D%7Bf%27%27%28-0.44375%29%7D%5Capprox%20-0.44173%5C%5Cx_%7B4%7D%3D-0.44173-%5Cfrac%7Bf%27%28-0.44173%29%7D%7Bf%27%27%28-0.44173%29%7D%5Capprox%20%5Cmathbf%7B-0.44173%7D%5C%5C)
These roots (in bold) are the critical numbers
Step-by-step explanation:
![\frac{x}{3} - 2 < 8 \\ \frac{x}{3} < 10 \\ x < 30](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7B3%7D%20%20-%202%20%3C%208%20%5C%5C%20%20%5Cfrac%7Bx%7D%7B3%7D%20%20%3C%2010%20%5C%5C%20x%20%3C%2030)
Answer:
percent
Step-by-step explanation:
it has a percent sign
Please mark me brainliest
Answer:
Option 3. y = 2x + 3
Step-by-step explanation:
wordssssss
Answer:
2 nd one
Step-by-step explanation: