Answer:
The common difference is same = d = -9
Therefore, the data represent a linear function.
Step-by-step explanation:
Given the table
x y
1 4
2 -5
3 -14
4 -23
5 -32
Finding the common difference between all the adjacent terms of y-values
d = -5 - 4 = -6,
d = -14 - (-5) = -14+5 = -9
d = -23 - (-14) = -23 + 14 = -9
d = -32 - (-23) = -32 + 23 = -9
It is clear that the common difference between all the adjacent terms is same.
Thus,
d = -9
We know that when y varies directly with x, the function is a linear function.
Here, it is clear that each x value varies 1 unit, and each y value varies -9 units.
i.e. The common difference is same = d = -9
Therefore, the data represent a linear function.
We need to find two numbers that multiply to 24 (last coefficient) and add to 10 (middle coefficient). Through trial and error, the two values are 6 and 4
6 + 4 = 10
6*4 = 24
So we can break up the 10ab into 6ab+4ab and then use factor by grouping
a^2 + 10ab + 24b^2
a^2 + 6ab + 4ab + 24b^2
(a^2+6ab) + (4ab+24b^2)
a(a+6b) + 4b(a+6b)
(a+4b)(a+6b)
Therefore, the original expression factors completely to (a+4b)(a+6b)
A. Write a function f(x) to represent the price after the 80% markup.
<span>b. Write a function g(x) to represent the price after the 25% markdown. </span>
<span>c. Use a composition function to find the price of an item after both price adjustments that originally costs the boutique $150. </span>
<span>d. Does the order in which the adjustments are applied make a difference? Explain.
</span>
answers
<span>a) f(x) = 1.8x
b) f(x) = 0.75(1.8x)
c) f(150) = 0.75(1.8(150) = $202.50
d) No, it doesn't matter. The result is the same.
</span>
Answer:
48x - 40y +24
Step-by-step explanation:
Answer:
75-33=42
Step-by-step explanation:
total (75) minus what she already owns (33) leaves you with how much she still needs since they're each a dollar