1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
3 years ago
13

PLZ HELP ME ASAP :]]]]]

Mathematics
2 answers:
Pavel [41]3 years ago
8 0
3 there I no way he needs more than 4 cups cause there is not 6 dozens
LenKa [72]3 years ago
6 0

Answer: 3

Step-by-step explanation:

You might be interested in
Below are the data collected from two random samples of 500 American students on the number of hours they spend in school per da
balu736 [363]

Answer: <em>Tara thinks correctly.</em>

Step-by-step explanation:

<em>Let's calculate the average value in sample A:</em>

<em>(4 × 70 + 5 × 100 + 6 × 125 + 7 × 135 + 8 × 70) ÷ 500 = 6,07 ≈ </em><em>6 hours</em>

<em>Let's calculate the average value in sample B:</em>

<em>(4 × 80 + 5 × 90 + 6 × 120 + 7 × 125 + 8 × 85) ÷ 500 = 6,09 ≈ </em><em>6 hours</em>

<em>So, Tara is correct in saying that the mean is 6.</em>

3 0
3 years ago
Will mark brainliest
Anna007 [38]

Answer: x\leq 3

PLEASE MARK ME BRAINLIEST

Step-by-step explanation:

1) Simplify both sides of the inequality:

4x+8\geq 5x+5

2) Subtract 5x from both sides:

4x+8-5x\geq 5x+5-5x

3) Simplify:

-x+8\geq 5

4) Subtract 8 from both sides:

-x+8-8\geq 5-8

5) Simplify:

-x\geq -3

6) Divide both sides by -1:

\frac{-x}{-1} =\frac{-3}{-1}

7) Simplify:

x\leq -3

5 0
2 years ago
Read 2 more answers
Bring the fraction a/a−4 to a denominator of 16−a^2<br><br> really do appreciate this thx
RSB [31]

Answer:

-a(a+4)/(16 - a²)

Step-by-step explanation:

            a/(a - 4)                  Multiply by (a + 4)/(a + 4)

= a(a + 4)/[(a – 4)(a + 4)]     Multiply the denominatorator terms

= a(a + 4)/(a² - 16)               Multiply by -1/(-1)

= -a(a+4)/(-a² + 16)              Reorder terms in denominator

= -a(a+4)/(16 - a²)

5 0
3 years ago
Find the 76th term of the arithmetic sequences 16 14 12
grigory [225]

Answer:

a₇₆ = - 134

Step-by-step explanation:

The n th term of an arithmetic sequence is

a_{n} = a₁ + (n - 1)d

where a₁ is the first term and d the common difference

Here a₁ = 16 and d = a₂ - a₁ = 14 - 16 = - 2, then

a₇₆ = 16 + (75 × - 2) = 16 - 150 = - 134

7 0
3 years ago
Please Help! This is a trigonometry question.
liraira [26]
\large\begin{array}{l} \textsf{From the picture, we get}\\\\ \mathsf{tan\,\theta=\dfrac{2}{3}}\\\\ \mathsf{\dfrac{sin\,\theta}{cos\,\theta}=\dfrac{2}{3}}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\qquad\mathsf{(i)} \end{array}


\large\begin{array}{l} \textsf{Square both sides of \mathsf{(i)} above:}\\\\ \mathsf{(3\,sin\,\theta)^2=(2\,cos\,\theta)^2}\\\\ \mathsf{9\,sin^2\,\theta=4\,cos^2\,\theta}\qquad\quad\textsf{(but }\mathsf{cos^2\theta=1-sin^2\,\theta}\textsf{)}\\\\ \mathsf{9\,sin^2\,\theta=4\cdot (1-sin^2\,\theta)}\\\\ \mathsf{9\,sin^2\,\theta=4-4\,sin^2\,\theta}\\\\ \mathsf{9\,sin^2\,\theta+4\,sin^2\,\theta=4} \end{array}

\large\begin{array}{l} \mathsf{13\,sin^2\,\theta=4}\\\\ \mathsf{sin^2\,\theta=\dfrac{4}{13}}\\\\ \mathsf{sin\,\theta=\sqrt{\dfrac{4}{13}}}\\\\ \textsf{(we must take the positive square root, because }\theta \textsf{ is an}\\\textsf{acute angle, so its sine is positive)}\\\\ \mathsf{sin\,\theta=\dfrac{2}{\sqrt{13}}} \end{array}

________


\large\begin{array}{l} \textsf{From (i), we find the value of }\mathsf{cos\,\theta:}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{2}\,sin\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\diagup\!\!\!\! 2}\cdot \dfrac{\diagup\!\!\!\! 2}{\sqrt{13}}}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\sqrt{13}}}\\\\ \end{array}

________


\large\begin{array}{l} \textsf{Since sine and cosecant functions are reciprocal, we have}\\\\ \mathsf{sin\,2\theta\cdot csc\,2\theta=1}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{sin\,2\theta}\qquad\quad\textsf{(but }}\mathsf{sin\,2\theta=2\,sin\,\theta\,cos\,\theta}\textsf{)}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\,sin\,\theta\,cos\,\theta}}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\cdot \frac{2}{\sqrt{13}}\cdot \frac{3}{\sqrt{13}}}} \end{array}

\large\begin{array}{l} \mathsf{csc\,2\theta=\dfrac{~~~~1~~~~}{\frac{2\cdot 2\cdot 3}{(\sqrt{13})^2}}}\\\\ \mathsf{csc\,2\theta=\dfrac{~~1~~}{\frac{12}{13}}}\\\\ \boxed{\begin{array}{c}\mathsf{csc\,2\theta=\dfrac{13}{12}} \end{array}}\qquad\checkmark \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2150237


\large\textsf{I hope it helps.}


Tags: <em>trigonometry trig function cosecant csc double angle identity geometry</em>

</span>
8 0
4 years ago
Other questions:
  • 24 POINTS!!!!!!!!!!!!!
    7·2 answers
  • What does 2 over5 equal in decimal form
    9·2 answers
  • The weight in pounds of a baby in the first six months of life can be modeled by the
    15·1 answer
  • (a) Use Euler's method with step size 0.2 to estimate y(1.4), where y(x) is the solution of the initial-value problem y' = 4x −
    14·1 answer
  • Can someone please help
    11·2 answers
  • Help this mail is annoying
    10·1 answer
  • Help me plisssssssssssssssssssssssssssssssssssss
    15·1 answer
  • Which expression below is equivalent to h + 5 + 3 - 2h
    7·1 answer
  • Can u help me pls, thank you very much, what I’m a suppose to do
    11·1 answer
  • Como tabular 2x - 3y = 2<br> 4x + y= 24
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!