Answer : The standard cell potential of the reaction is, -1.46 V
Explanation :
The given balanced cell reaction is,

Here, chromium (Cr) undergoes oxidation by loss of electrons and act as an anode. Lead (Pb) undergoes reduction by gain of electrons and thus act as cathode.
The standard values of cell potentials are:
Standard reduction potential of lead ![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
Standard reduction potential of chromium ![E^0_{[Cr^{3+}/Cr]}=1.33V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCr%5E%7B3%2B%7D%2FCr%5D%7D%3D1.33V)
Now we have to calculate the standard cell potential for the following reaction.

![E^0=E^0_{[Pb^{2+}/Pb]}-E^0_{[Cr^{3+}/Cr]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-E%5E0_%7B%5BCr%5E%7B3%2B%7D%2FCr%5D%7D)

Therefore, the standard cell potential of the reaction is, -1.46 V
<h3>
Answer:</h3>
2265 g Fe₃O₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] Fe₃O₄ + 4H₂ → 3Fe + 4H₂O
[Given] 705.0 g H₂O
<u>Step 2: Identify Conversions</u>
[RxN] 4 mol H₂O → 1 mol Fe₃O₄
Molar Mass of H - 1.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Fe - 55.85 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
Molar Mass of Fe₃O₄ - 3(55.85) + 4(16.00) = 231.55 g/mol
<u>Step 3: Convert</u>
- Set up stoich:

- Multiply/Divide/Cancel units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
2264.74 g Fe₃O₄ ≈ 2265 g Fe₃O₄
If 1000 ml (1 L) of CH₃COOH contain 1.25 mol
let 250 ml of CH₃COOH contain x
⇒ x =
= 0.3125 mol
∴ moles of CH₃COOH in 250ml is 0.3125 mol
Now, Mass = mole × molar mass
= 0.3125 mol × [(12 × 2)+(16 × 2)+(1 × 4)] g/mol
= 18.75 g
∴ Mass of CH₃COOH present in a 250 mL cup of 1.25 mol/L solution of vinegar is <span>18.75 g</span>
1. true
2. false
3. false
4. true
5.false
6. It's true but can be false because a change in state can be a physical change as well.
Answer: 55,000
<u>Explanation:</u>
Scientific Notation: 5.5 x 10⁴
Standard form: move the decimal 4 places to the right
5 5 0 0 0 0.
= 55,000