Answer:
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized
Answer is: unsaturated.
Solubility of potassium chlorate on 70°C is approximately 30 grams in 100 grams of water.
Solubility of potassium chlorate on 70°C is approximately 10 grams in 100 grams of water.
So if dissolve 15 g of potassium chlorate in 201 g of water, there is less salt than it solubility and solution is unsaturated.
Answer:
1L
Explanation:
First, let us calculate the number of mole present in 20g of NaOH. This is illustrated below:
Mass = 20g
Molar Mass of NaOH = 23 + 16 + 1 = 40g/mol
Number of mole =?
Number of mole = Mass /Molar Mass
Number of mole of NaOH = 20/40 = 0.5mol
From the question given, we obtained the following data:
Molarity = 0.5M
Mole = 0.5mole
Volume =?
Molarity = mole /Volume
Volume = mole /Molarity
Volume = 0.5/0.5
Volume = 1L
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.
So to put them all in the same units we have
<span>2500 mL </span>
<span>250 mL </span>
<span>25mL </span>
<span>2,500,000,000mL </span>
<span>So the third one is the smallest</span>