8 divided by 9 goes to 8/9
along with 16/19 and 1/18 *16
6f = x
x stands for how many flowers the parade can use
<h3>
Answer: 80 degrees</h3>
============================================================
Explanation:
I'm assuming that segments AD and CD are tangents to the circle.
We'll need to add a point E at the center of the circle. Inscribed angle ABC subtends the minor arc AC, and this minor arc has the central angle AEC.
By the inscribed angle theorem, inscribed angle ABC = 50 doubles to 2*50 = 100 which is the measure of arc AC and also central angle AEC.
----------------------------
Focus on quadrilateral DAEC. In other words, ignore point B and any segments connected to this point.
Since AD and CD are tangents, this makes the radii EA and EC to be perpendicular to the tangent segments. So angles A and C are 90 degrees each for quadrilateral DAEC.
We just found angle AEC = 100 at the conclusion of the last section. So this is angle E of quadrilateral DAEC.
---------------------------
Here's what we have so far for quadrilateral DAEC
- angle A = 90
- angle E = 100
- angle C = 90
- angle D = unknown
Now we'll use the idea that all four angles of any quadrilateral always add to 360 degrees
A+E+C+D = 360
90+100+90+D = 360
D+280 = 360
D = 360-280
D = 80
Or a shortcut you can take is to realize that angles E and D are supplementary
E+D = 180
100+D = 180
D = 180-100
D = 80
This only works if AD and CD are tangents.
Side note: you can use the hypotenuse leg (HL) theorem to prove that triangle EAD is congruent to triangle ECD; consequently it means that AD = CD.
You have to keep order of operations in mind.
1. Take care of the parentheses; distribute.
-3+6x-3=-20-8x
Simplified: 6x-6=-20-8x
2. Isolate the x variable.
Add 8x to both sides and add 6 to both sides.
14x=-14
3. Solve for x.
Divide by 14 on both sides.
x=-1
Answer: No.
Step-by-step explanation: g should also be factored out. 10g(a - 3z).