1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
10

Find the product for this pleasee!

Mathematics
2 answers:
photoshop1234 [79]3 years ago
5 0

Answer:

5/21

Step-by-step explanation:

miss Akunina [59]3 years ago
3 0

Answer:

5/21

Step-by-step explanation:

You might be interested in
Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution,
Gnom [1K]

Answer:

x1=-4/5, x2=18/5 and x3=7/5

Step-by-step explanation:

\left[\begin{array}{ccc|c}1&0&-3&-5\\3&1&2&4\\2&2&1&7\end{array}\right]

you can do linear combination between the rows:

2nd row=R2-3R1 and 3th row=R3-2R1

\left[\begin{array}{ccc|c}1&0&-3&-5\\0&1&11&19\\0&2&7&17\end{array}\right]

3th row=(3R2-R3)/15

\left[\begin{array}{ccc|c}1&0&-3&-5\\0&1&11&19\\0&0&1&\frac{7}{5} \end{array}\right]

1st row=R1+3R3 and R2-11R3

\left[\begin{array}{ccc|c}1&0&0&-4/5 \\0&1&0&18/5 \\0&0&1&7/5\end{array}\right]

x1=-4/5, x2=18/5 and x3=7/5

6 0
3 years ago
<img src="https://tex.z-dn.net/?f=if%20%5C%3A%20100%20%7B%20%5C%3A%20%20%7D%5E%7B2%7D%20%20%5C%3A%20%20%3D%20251p%20%5C%3A%20sol
Nikolay [14]
= 39.84
:
100^2=251
10000=251
ℎ
251 ℎ
10000/251=251/251
39.84=1
39.84=
8 0
3 years ago
Read 2 more answers
Question:
riadik2000 [5.3K]

Answer:

180

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Please help!!<br> Write a matrix representing the system of equations
frozen [14]

Answer:

(4, -1, 3)

Step-by-step explanation:

We have the system of equations:

\left\{        \begin{array}{ll}            x+2y+z =5 \\    2x-y+2z=15\\3x+y-z=8        \end{array}    \right.

We can convert this to a matrix. In order to convert a triple system of equations to matrix, we can use the following format:

\begin{bmatrix}x_1& y_1& z_1&c_1\\x_2 & y_2 & z_2&c_2\\x_3&y_2&z_3&c_3 \end{bmatrix}

Importantly, make sure the coefficients of each variable align vertically, and that each equation aligns horizontally.

In order to solve this matrix and the system, we will have to convert this to the reduced row-echelon form, namely:

\begin{bmatrix}1 & 0& 0&x\\0 & 1 & 0&y\\0&0&1&z \end{bmatrix}

Where the (x, y, z) is our solution set.

Reducing:

With our system, we will have the following matrix:

\begin{bmatrix}1 & 2& 1&5\\2 & -1 & 2&15\\3&1&-1&8 \end{bmatrix}

What we should begin by doing is too see how we can change each row to the reduced-form.

Notice that R₁ and R₂ are rather similar. In fact, we can cancel out the 1s in R₂. To do so, we can add R₂ to -2(R₁). This gives us:

\begin{bmatrix}1 & 2& 1&5\\2+(-2) & -1+(-4) & 2+(-2)&15+(-10) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\0 & -5 & 0&5 \\3&1&-1&8 \end{bmatrix}

Now, we can multiply R₂ by -1/5. This yields:

\begin{bmatrix}1 & 2& 1&5\\ -\frac{1}{5}(0) & -\frac{1}{5}(-5) & -\frac{1}{5}(0)& -\frac{1}{5}(5) \\3&1&-1&8 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3&1&-1&8 \end{bmatrix}

From here, we can eliminate the 3 in R₃ by adding it to -3(R₁). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\3+(-3)&1+(-6)&-1+(-3)&8+(-15) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&-5&-4&-7 \end{bmatrix}

We can eliminate the -5 in R₃ by adding 5(R₂). This yields:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0+(0)&-5+(5)&-4+(0)&-7+(-5) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&-4&-12 \end{bmatrix}

We can now reduce R₃ by multiply it by -1/4:

\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\ -\frac{1}{4}(0)&-\frac{1}{4}(0)&-\frac{1}{4}(-4)&-\frac{1}{4}(-12) \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 2& 1&5\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Finally, we just have to reduce R₁. Let's eliminate the 2 first. We can do that by adding -2(R₂). So:

\begin{bmatrix}1+(0) & 2+(-2)& 1+(0)&5+(-(-2))\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 1&7\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

And finally, we can eliminate the second 1 by adding -(R₃):

\begin{bmatrix}1 +(0)& 0+(0)& 1+(-1)&7+(-3)\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}\\\Rightarrow\begin{bmatrix}1 & 0& 0&4\\ 0 & 1 & 0& -1 \\0&0&1&3 \end{bmatrix}

Therefore, our solution set is (4, -1, 3)

And we're done!

3 0
3 years ago
Please help me with these two questions. Find the circumference AND area for the circles on the right. (I will mark brainliest)
notsponge [240]

5). Radius = 6 km. Circumference = 12π km. Area = 36π km²

6). Diameter = 8 mm. Circumference = 8π mm. Area = 16π mm²

7 0
3 years ago
Read 2 more answers
Other questions:
  • One thousand families were surveyed to determine the distribution of families by size
    13·1 answer
  • In the class , 0.48 of the students have brown hair. 3/11 of the students have blonde hair . What percent of students have neith
    15·1 answer
  • List the important features for the graph of a quadratic function.
    13·1 answer
  • Find the 9th term of the geometric sequence <br> 8 , 32 , 128
    5·1 answer
  • Factorise xy(x-y)+yz(y-z)+zx(z-x)
    15·1 answer
  • Mr. Burr and his daughter live in Corpus Christi, Texas. Mr. Burr’s employer pays 100% of his insurance premium and 50% of the p
    12·1 answer
  • Brian set a goal to horseback ride more than 6 miles. The horse he rode averaged a speed of 4.6 miles per hour. A 2-column table
    10·2 answers
  • Find the difference write the answer in simplest form 11/18 -1/6
    11·1 answer
  • .
    12·1 answer
  • A chain of sports shops catering to beginning skiers, headquartered in Aspen, Colorado, plans to conduct a study of how much a b
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!