Answer:
Such molecule must have molecular formula of C15N3H15
Explanation:
Mass of carbon in such molecule

The atomic mass of carbon is 12.01 g/mol, so in 182.28 g of carbon there is 15.18 mols of carbon.
Mass of Nitrogen in such molecule

The atomic mass of nitrogen is 14.01 g/mol, so in 42.53g of nitrogen there is 3.04 mols of nitrogen.
Mass of Hydrogen in such molecule

The atomic mass of Hydrogen is 1.00 g/mol, so in 15.19 g of Hydrogen there is 15.19 mols of Hydrogen.
Such molecule must have molecular formula of C15N3H15
<span>At room temperature and atmospheric pressure, nothing happens when the two gasses are mixed. However, at high temperature and pressure (450C, 200atm), in the presence of an iron oxide catalyst, the production of ammonia is thermodynamically advantageous.</span>
The molar mass of gas = 238.29 g/mol
<h3>Further explanation</h3>
Given
mass = 81.5 g
P=1.75 atm
V=4.92 L
T=307 K
Required
molar mass
Solution
The gas equation can be written


So the equation becomes :

Input the value :

6.022×10^23 should be correct. Are there any options to choose from?
<u>Avogadros number</u>