When an electron quickly occupies an strength state increased than its ground state, it is in an excited state. An electron can end up excited if it is given greater energy, such as if it absorbs a photon, or packet of light, or collides with a close by atom or particle.
Explanation:
develop a short message which you will deliver to the people in this community about application of chemistry in everyday life
I belive the answer to your question would be 0
Answer:
HI.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
Rate of effusion ∝ 1/√molar mass.
- <em>(Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).</em>
- An unknown gas effuses at one half the speed of that of oxygen.
∵ Rate of effusion of unknown gas = 1/2 (Rate of effusion of O₂)
∴ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = 2.
Molar mass of O₂ = 32.0 g/mol.
∵ (Rate of effusion of O₂) / (Rate of effusion of unknown gas) = (√molar mass of unknown gas) / (√molar mass of O₂).
∴ 2.0 = (√molar mass of unknown gas) / √32.0.
(
√molar mass of unknown gas) = 2.0 x √32.0
By squaring the both sides:
∴ molar mass of unknown gas = (2.0 x √32.0)² = 128 g/mol.
∴ The molar mass of sulfur dioxide = 80.91 g/mol and the molar mass of HI = 127.911 g/mol.
<em>So, the unknown gas is HI.</em>
<em></em>