Answer:
3. Inverse 1. Direct
Explanation:
P- pressure
V - volume
T - temperature
P1*V1 / T1 = P2*V2 / T2 ...... (1)
That's the general gas law with the combined ideas of charles, boyle & lussac.
Whenever you are restricted as "constant" temperature, volume, or pressure...cancel them off of your equation.
in this case 3. is indirectly telling us to cancel the temperature (T).
so we'll be left w P1*V1 = P2*V2
now notice that any relation ship that is multiplied like the one above consists of inversely related quantities. & so we conclude that-
P & V are inversely proportional or have an inverse relationship.
similarly in 1. we'll cancel p off of the general formula (1)
to be left with V1/T1 = V2/T2
also note that quantities involved in division are directly related to each other & hence the answer.
Answer:
About 110 g.
Your tool of choice here will be the solubility graph for potassium nitrate, KNO3, in water.
Answer:
0.2g
Explanation:
All radiodecay follows the 1st order decay equation
A = A₀e^-kt
A => Activity at time (t)
A₀ => Initial Activity at time = 0
k => decay constant for isotope
T => time in units that match the decay constant
Half-Life Equation => kt(½) = 0.693 => k = 0.693/34 min = 0.0204min¹
A = A₀e^-kt = (26g)e^-(0.0204/min)(238min) = (26g)(0.0078) = 0.203g ~ 0.2g (1 sig fig).
Q = mC∆T
<span>where: </span>
<span>q = heat </span>
<span>m = mass of substance = 35.0 grams </span>
<span>C = 0.385 J/g*C </span>
<span>∆T = change in temperature = 65C - 20C = 45C </span>
<span>q = (35.0 g)*(0.385 J/g*C)*(45C) = 606 J </span>