Answer:
The answer to your question is below
Step-by-step explanation:
Data
Volume = 270 cm³
height = 5 cm
length = ?
width = ?
Formula
Volume of a rectangular prism = height x length x width
- Solve for Area of the base (height x length)
Area of the base = Volume / height
-Substitution
Area of the base = 270 / 5
-Result
Area of the base = 54 m²
2.- Find the prime factors of 54
54 2
27 3
9 3
3 3
1
3.- The possible values of the sidas of the rectangle are:
Combining the prime factor of 54.
Length Width
2 x 3 = 6 and 3 x 3 = 9
or 2 x 3 x 3 = 18 and 3 x 1 = 3
or 3 x 3 x 3 = 27 and 2 x 1 = 2
Answer:
Option A. 
Step-by-step explanation:
we know that
The combined area of the 3 windowpanes and frame is equal to

using a graphing tool to solve the quadratic equation
The solution is 
see the attached figure
7=x^2+20x+82
0=x^2+20x+75
What adds to 20 and multiplies to 75? 5 and 15.
x^2+5x+15x+75
x(x+5) 15(x+5)
(x+15) (x+5)
Zeroes are x= -5 and x= -15
let's firstly change the 1.2 to a fraction
![1.\underline{2}\implies \cfrac{12}{1\underline{0}}\implies \cfrac{6}{5} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{\frac{6}{5}}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{\frac{6}{5}}-\stackrel{y1}{6}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{10}}}\implies \cfrac{~~ \frac{6-30}{5}~~}{-6}\implies \cfrac{~~ \frac{-24}{5}~~}{-6}\implies \cfrac{~~ -\frac{24}{5}~~}{-\frac{6}{1}}](https://tex.z-dn.net/?f=1.%5Cunderline%7B2%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B1%5Cunderline%7B0%7D%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D-%5Cstackrel%7By1%7D%7B6%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B6-30%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B-24%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20-%5Cfrac%7B24%7D%7B5%7D~~%7D%7B-%5Cfrac%7B6%7D%7B1%7D%7D)
![-\cfrac{\stackrel{4}{~~\begin{matrix} 24 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{5}\cdot -\cfrac{1}{\underset{1}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\implies \boxed{\cfrac{4}{5}}](https://tex.z-dn.net/?f=-%5Ccfrac%7B%5Cstackrel%7B4%7D%7B~~%5Cbegin%7Bmatrix%7D%2024%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B5%7D%5Ccdot%20-%5Ccfrac%7B1%7D%7B%5Cunderset%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B4%7D%7B5%7D%7D)
20? I’m not for sure maybe look in the book? That’s the answer I got and it was right