Answer: m1 = 4
m2 = 5
m3 = 2
Step-by-step explanation:
given (21/11, 6/11) = m1 (-1/3) + m2 (3, -2) + m3 (5, 2)
= (-m1 + 3m2 + 5m3) / 11 = 21/11
= (3m1 + (-2)m2 + 2m3) / 11 = 6/11
so that m1 + m2 +m3 = 11
-m1 + 3m2 + 5m3 = 21
3m1 - 2m2 + 2m3 = 6
from this, we get the augmented matrix as
\left[\begin{array}{cccc}-1&1&1&11\\-1&3&5&21\\3&-2&2&6\end{array}\right]
= \left[\begin{array{cccc}-1&1&1&11\\0&4&6&32\\0&-5&-1&-27\end{array}\right] \left \{ {{R2=R2 + R1} \atop {R3=R3 -3R1 }]} \right.
= \left[\begin{array}{cccc}-1&1&1&11\\0&1&3/2&8\\0&-5&-1&-27\end{array}\right]
= \left[\begin{array}{cccc}-1&1&1&11\\0&1&3/2&8\\0&0&13/2&13\end{array}\right]
(R3 = R3 + 5R2)
this gives m1 + m2 + m3 = 11
m2 + 3/2 m3 = 8
13/2 m3 = 8
13/2 m3 = 13
m3 = 2
m2 = 8 -3/2 (2) = 5
= m1 = 11- 5 - 2 = 4
this gives
m1 = 4
m2 = 5
m3 = 2
-30 because -30 +20=-10
Hope this helped
Answer:
The balance in her lunch account at the end of the day on Friday is -$1.15.
Step-by-step explanation:
The balance at the end of the week will be the result of adding up the initial balance with the amount deposited on Monday minus the total amount spent that week.
Initial balance=$2.60
Amount deposited on Monday=$20
Total amount spent that week=$4.75*5=$23.75
Balance=$2.60+$20-$23.75
Balance=$22.60-$23.75
Balance=-$1.15
According to this, the answer is that the balance in her lunch account at the end of the day on Friday is -$1.15.
Answer:
(a+b)^2 if a©+2b
Step-by-step explanation:
i not sure
Let Home runs = X
Triples would be X-3 ( 3 less triples than home runs)
Doubles would be 3x ( 3 times as many doubles as home runs)
Singles would be 45(x-3) ( 45 times as many singles as triples)
Simplify the equation for singles to be 45x-153
Now you have X + x-3 + 3x + 4x-135 = 262
Simplify:
50x - 138 = 262
Add 138 to both sides:
50x = 400
Divide both sides by 50:
x = 400/50
x = 8
Home runs = x = 8
Triples = x-3 = 8-3 = 5
Doubles = 3x = 3(8) = 24
Singles = 45(x-3) = 45(8-3) = 45(5) = 225