Answer:
Quadratic functions are those where their rate of change changes at a constant rate. Exponential functions are those where their rate of change is proportional to itself.
An example of a quadratic function would be the shape that a ball makes when you throw it. Gravity causes a constant acceleration, the ball slows down as it is moving up, and then it speeds up as it comes down.
An example of an exponential function would be the population of a bacterium as long as there is enough space and nutrients or how your money grows with compound interest in a bank.
A quadratic function is one in the form
f(x)=ax2+bx+c
It’s rate of change (first derivative) is linear.
f′(x)=2ax+b
The rate of the rate of change (second derivative) is constant.
f′′(x)=2a
Quadratics are then the solutions to the differential equation
f′′=C
An exponential function is one in the following form.
g(x)=Aekx
It’s rate of change is another exponential function.
g′(x)=Akekx
So exponentials are the solutions to the differential equation
g′=kg
Step-by-step explanation:
Yes. : )
Answer:
(a) true
(b) true
(c) false; {y = x, t < 1; y = 2x, t ≥ 1}
(d) false; y = 200x for .005 < |x| < 1
Step-by-step explanation:
(a) "s(t) is periodic with period T" means s(t) = s(t+nT) for any integer n. Since values of n may be of the form n = 2m for any integer m, then this also means ...
s(t) = s(t +2mt) = s(t +m(2T)) . . . for any integer m
This equation matches the form of a function periodic with period 2T.
__
(b) A system being linear means the output for the sum of two inputs is the sum of the outputs from the separate inputs:
s(a) +s(b) = s(a+b) . . . . definition of linear function
Then if a=b, you have
2s(a) = s(2a)
__
(c) The output from a time-shifted input will only be the time-shifted output of the unshifted input if the system is time-invariant. The problem conditions here don't require that. A system can be "linear continuous time" and still be time-varying.
__
(d) A restriction on an input magnitude does not mean the same restriction applies to the output magnitude. The system may have gain, for example.
Answer:
X=8
Step-by-step explanation:
8-2=6 3x6=18
X² - 21x + 110
first you break it up into two parenthesis & since x is squared you need two x's
since 110 is positive and 21 is negitive, both of your signs need to be negitive
(x - ?)(x - ?)
then you need to think! what are the factors of 110?
Which of these factors add up to 21? those factors go in the parenthesis
Does this Help? Let me know if you need anything!
Answer:
The 2 in the numerator should be -2
Step-by-step explanation:
-2 is the a, you cant get rid of it when doing the quadratic formula. I think