If f(x) = 2x - 5 and g(x) = x + 52, then f(g(x)) can be deduced by placing g(x) in the spot of x in the f(x) equation as follows:
f(g(x)) = 2(g(x)) - 5
Since we know g(x) = x + 52, let's plug it in:
f(g(x)) = 2(x + 52) - 5
f(g(x)) = 2x + 104 - 5
f(g(x)) = 2x + 99
First, let's calculate the mean and the mean absolute deviation of the first bowler.
FIRST BOWLER: <span>8,5,5,6,8,7,4,7,6
Mean = (Sum of all data)/(Number of data points) = (8+5+5+6+8+7+4+7+6)/9
<em>Mean = 6.222</em>
Mean absolute deviation or MAD = [</span>∑(|Data Point - Mean|]/Number of Data Points
MAD = [|8 - 6.222| + |5 - 6.222| + |5 - 6.222| + |6 - 6.222| + |8 - 6.222| + |7 - 6.222| + |4 - 6.222| + |7 - 6.222| + |6 - 6.222|]/9
<em>MAD = 1.136</em>
SECOND BOWLER: <span>10,6,8,8,5,5,6,8,9
</span>Mean = (Sum of all data)/(Number of data points) = (<span>10+6+8+8+5+5+6+8+9</span>)/9
<em>Mean = 7.222</em>
Mean absolute deviation or MAD = [∑(|Data Point - Mean|]/Number of Data Points
MAD = [|10 - 7.222| + |6 - 7.222| + |8 - 7.222| + |8 - 7.222| + |5 - 7.222| + |5 - 7.222| + |6 - 7.222| + |8 - 7.222| + |9 - 7.222|]/9
<em>MAD = 1.531
</em>
The mean absolute deviation represents the average distance of each data to the mean. Thus, the lesser the value of the MAD is, the more consistent is the data to the mean. <em>B</em><em>etween the two, the first bowler is more consistent.</em>
Answer:
Any figure?
Step-by-step explanation:
Answer:
22.97
Step-by-step explanation:
Given that the average cost of an IRS Form 1040 tax filing at Thetis Tax Service is $138.00.
Let x be the average cost an IRS Form 1040 tax filing at Thetis Tax Service
is given
From std normal distribution table we find 77th percentile z value.
z=0.74
Corresponding X value = 155
i.e.
where s is the std deviation
Simplify to get
Std deviation = 
Answer:
2x^3+2x-1
Step-by-step explanation: