1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
10

The lines represented by the equations 20y-24x=-20y and 5y-6x=-5 are

Mathematics
2 answers:
tankabanditka [31]3 years ago
8 0

Answer:

The answer is perpendicular

Step-by-step explanation:

convert the two equations into slope-intercept form

y=7/5x - 1

y=6/5x -1

Then, put it in the graph and you'll get lines intersecting at the same point which is the y-intercept.

Anit [1.1K]3 years ago
6 0

Answer:don’t listen to the other guy he’s wrong. The answer is the same line.

Step-by-step explanation:

20y-24x=-20 add 24x to both sides

20y=24x-20

Divide 20 to all

New equation is

Y=5/6x-1

Now let’s solve for 5y-6x=-5

Add 6x to both sides

5y=6x-5

Divide 5 to all

The new equation is

Y=6/5x-1

As you see they have the same equation so the answer is that the lines are the same :) have a good day guys hope this helped <3

You might be interested in
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
5x^2=45 what is x? ahh I need help.. anyone? 
Tema [17]
<span>5x^2 = 45</span>

Divide each side by 5 :

x^2 = 9

Take the square root of each side:

 x = +3  or  -3 .

Did I go too fast for you ?
3 0
3 years ago
Read 2 more answers
The scores on a standardized exam are normally distributed with a mean of 400 and a standard deviation of 50.
S_A_V [24]

Using the normal distribution, it is found that approximately 40% of the scores are greater than 413.

<h3>Normal Probability Distribution</h3>

The z-score of a measure X of a normally distributed variable with mean \mu and standard deviation \sigma is given by:

Z = \frac{X - \mu}{\sigma}

  • The z-score measures how many standard deviations the measure is above or below the mean.
  • Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.

In this problem, we have that the mean and the standard deviation of the scores are given by:

\mu = 400, \sigma = 50

Approximately 40% of the scores are greater than the 60th percentile, which is <u>X when Z = 0.253</u>.

Then:

Z = \frac{X - \mu}{\sigma}

0.253 = \frac{X - 400}{50}

X - 400 = 50(0.253)

X = 412.65.

Rounding up, approximately 40% of the scores are greater than 413.

More can be learned about the normal distribution at brainly.com/question/24663213

#SPJ1

8 0
2 years ago
Block of bags with 2 squares, 5 circles, 2 triangles and 4 rectangles. What fraction are squares?
Advocard [28]

Answer:

2/13

Step-by-step explanation:

There are thirteen shapes and out of that two are

3 0
3 years ago
Square root of 12-square root of 8
Pavlova-9 [17]

Answer:

please tell me if im wrong!

Step-by-step explanation:

answer: 16 √ 3

8 0
2 years ago
Read 2 more answers
Other questions:
  • You switch the positions of two items on your menu. Chicken tenders sales drop from $800 to $600. Food cost for chicken tenders
    8·1 answer
  • In which quadrant does the point (–10, –9) lie
    10·1 answer
  • According to the AAMA Code of Ethics, members of the AAMA should always
    15·2 answers
  • Use any model you choose to solve the story problem. The pet store owner uses one dose of algae solution in the aquarium for eac
    14·2 answers
  • What is 1.8-9.0 = help me plz
    9·2 answers
  • Evaluate each expression if a = -1, b = -8, c = 5, and d = -1.4.
    5·1 answer
  • Which transformation maps the pre-image to the image?
    11·1 answer
  • Find the missing side lengths. Leave your answers as radicals in simplest form.
    13·1 answer
  • What’s -10/-1 simplified<br> What’s -1/-3 simplified
    5·1 answer
  • Now convert 1/5 to a decimal number by completing the long division. Remember to add 0s to the dividend as you work. Divide thro
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!