The force acting on his feet.
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
It is dependent upon the object's mass. The greater the mass of the object greater will be the inertia of the object, and hence it's resistance to change in motion as well.
Answer:
its speed when its height was half that of its starting point is 25.46 m/s
Explanation:
Given;
final speed of the roller coaster, v = 36 m/s
Applying general equation of motion;
V² = U² + 2gh
where;
V is the final speed of the roller coaster
U is the initial speed of the roller coaster = 0
h is the height attained at a given velocity
36² = 0 + (2 x 9.8)h
1296 = 19.6 h
h = 1296/19.6
h = 66.1224 m
when its height was half that of its starting point, h₂ = ¹/₂ h
h₂ = ¹/₂(66.1224 m) = 33.061 m
At h = 33.061 m, V = ?
V² = U² + 2gh
V² = 0 + 2 x 9.8 x 33.061
V² = 648
V = √648
V = 25.46 m/s
Therefore, its speed when its height was half that of its starting point is 25.46 m/s