Recall that average velocity <em>v</em> is given by
<em>v</em> = ∆<em>x</em>/∆<em>t</em>
where ∆<em>x</em> is displacement and ∆<em>t</em> is time.
Under constant acceleration, average velocity is also equal to the average of the initial and final velocities,
<em>v</em> = (<em>v</em>₂ + <em>v</em>₁)/2
The player starts at rest, so <em>v</em>₁ = 0, and speeds up to <em>v</em>₂ = 5.45 m/s in a matter of ∆<em>t</em> = 3.02 s. So
∆<em>x</em> = (<em>v</em>₂ + <em>v</em>₁) ∆<em>t</em> / 2
∆<em>x</em> = (5.45 m/s) * (3.02 s) / 2
∆<em>x</em> ≈ 8.23 m