Explanation:
its easy everone can do it .....let me know
The gravitational potential energy will increase
Explanation:
The gravitational potential energy (GPE) of an object is the energy possessed by the object due to its position in a gravitational field.
Near the Earth's surface, the GPE of an object is given by

where
m is the mass of the object
g is the acceleration of gravity
h is the heigth of the object above the ground
From the equation, we see that the GPE is directly proportional to the mass: therefore, if the mass increases, the GPE will increase as well.
So, for the beanbag in this problem, when its mass increases, the GPE will increase as well.
Learn more about gravitational potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
First, let’s correct the question. Acceleration is the rate of change in velocity. Its unit therefore is ft/sec/sec. If S is the distance traveled for a given duration, S = Vot + (1/2)at^2 where Vo is the initial velocity, a is the acceleration and t is the time. For Vo = 0, a = 6m/sec/sec and t = 3 sec. The distance traveled is S = 0 + (1/2) x 6 x 3^2 = 27 meters
Answer:
The weight of the girl = 1045.86 kg/m³
Explanation:
Density: This can be defined as the ratio of the mass of a body to the volume of that body. The S.I unit of density is kg/m³.
From Archimedes principle,
R.d = Density of the person/Density of water = Weight of the person in air/Upthrust.
⇒ D₁/D₂ = W/U............................... Equation 1.
Where D₁ = Density of the person, D₂ = Density of water, W = Weight of the person in air, U = Upthrust in water.
Making D₁ the subject of the equation,
D₁ = D₂(W/U)................................... Equation 2
<em>Given: D₂ = 1000 kg/m³ , W = 509.45 N, U = lost in weight = weight in air - weight in water = 509.45 - 22.34 = 487.11 N</em>
<em>Substituting these values into equation 2</em>
D₁ = 1000(509.45/487.11)
D₁ = 1045.86 kg/m³
Thus the weight of the girl = 1045.86 kg/m³
<em></em>