Answer:

Explanation:
Let the charge on the ball bearing is q.
charge on glass bead, Q = 20 nC = 20 x 10^-9 C
Force between them, F = 0.018 N
Distance between them, d = 1 cm = 0.01 m
By use of Coulomb's law in electrostatics

By substituting the values


Thus, the charge on the ball bearing is 
Explanation:
You need two, maybe three things - something that's vibrating, a medium for those vibrations to propagate in, and a listener to hear it or recording equipment to pick it up
When dealing with multiple forces acting on a body, it is advisable to draw a free-body diagram like that shown in the picture. There are four forces acting on the box: weight (W) pointing straight down, normal force perpendicular to the slope denoted as Fn, force used to push the box upwards along the slope and the frictional force acting opposite to the direction of motion of the box denoted as Ff. Frictional force is equal to coefficient of kinetic friction (μk) multiplied with Fn.
∑Fy = Fn - mgcos30° = 0
Fn = (50)(9.81)(cos 16) = 471.5 N
When in motion, the net force is equal to mass times acceleration according to Newton's 2nd Law of Motion:
Fnet = F - μk*Fn - mgsin30° = ma
250 - (0.2)(471.5 N) - (50)(sin 16°) = (50)(a)
a = 2.84 m/s²
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1