Answer:0.69
Explanation:
Coefficient of kinetic friction=f/R=61.8/90=0.69
Answer:
Explanation:
Newton's Gravitation Law

where G is a constant, M and M the masses e d the distance betwen masses.

Answer:
The rate of change of magnetic field is 2.23 T/s.
Explanation:
Given that,
Dimension of rectangular coil is 7.2 cm by 3.7 cm.
Number of turns in the coil, N = 104
Resistance of the coil, R = 12.4 ohms
Current, I = 0.05 A
We need to find the rate of change of magnetic field in the coil. The induced emf is given by the rate of change of magnetic flux. So,

Ohm's law is :

So,

So, the rate of change of magnetic field is 2.23 T/s.
Answer:
Explanation:
Block A sits on block B and force is applied on block A . Block A will experience two forces 1) force P and 2 ) friction force in opposite direction of motion . Block B will experience one force that is force of friction in the direction of motion .
Let force on block A be P . friction force on it will be equal to kinetic friction, that is μ mg , where μ is coefficient of friction and m is mass of block A
friction force = .4 x 2.5 x 9.8
= 9.8 N
net force on block A = P - 9.8
acceleration = ( P - 9.8 ) / 2.5
force on block B = 9.8
acceleration = force / mass
= 9.8 / 6
for common acceleration
( P - 9.8 ) / 2.5 = 9.8 / 6
( P - 9.8 ) / 2.5 = 1.63333
P = 13.88 N .
Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s