Answer:
The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Explanation:
Given that,
Mass of object = 5 kg
Speed = 3 m/s
Mass of stationary object = 3 kg
Moving object deflected = 30°
Stationary object deflected = 31°
We need to calculate the velocity of each ball after collision
Using conservation of momentum
Along x-axis

Put the value into the fomrula


....(I)
Along y -axis

Put the value into the formula

...(II)
From equation (I) and (II)


Put the value of v₁ in equation (I)



Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Positive Work.
Negative Work.
Case of zero work done.
Displacement at an angle to the force.
Energy.
Kinetic Energy.
work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, it is often represented as the product of force and displacement.
Answer:
are known as hydrocarbons. the saturated hydrocarbons are known as alkanes.
<span>pile
battery
<span>power sector</span></span>
Answer:
This motion is known as Brownian motion.
Explanation:
This motion is known as Brownian motion.