1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
12

How does The centripetal fotce change if the car has less Mass?​

Physics
1 answer:
vaieri [72.5K]3 years ago
5 0

Answer:

The centripetal force acting on the car is proportional to the mass of the car.

Explanation:

Let,

The mass of the car be 'm'

The velocity of the car moving in the curved path be 'v'

The radius of the curved path be 'r'

According to physics, a body moving ion circular path experience a force directed along the radius of the path. This force is called centripetal force.

The formula for centripetal force is,

                                   <em>F = mv²/r</em>

Where,

                                      a = v²/r

So, if the mass of the car changes, the centripetal force also changes proportionally according to the above equation.

You might be interested in
A sound source is moving at 80 m/s toward a stationary listener that is standing in still air (a) Find the wavelength of the sou
Setler [38]

Answer:

a. wavelength of the sound, \vartheta = 1.315\vartheta_{o}

b. observed frequecy, \lambda = 0.7604\lambda_{o}

Given:

speed of sound source, v_{s} = 80 m/s

speed of sound in air or vacuum, v_{a} = 343 m/s

speed of sound observed, v_{o} = 0 m/s

Solution:

From the relation:

v = \vartheta \lambda        (1)

where

v = velocity of sound

\vartheta = observed frequency of sound

\lambda = wavelength

(a) The wavelength of the sound between source and the listener is given by:

\lambda = \frac{v_{a}}{\vartheta }         (2)

(b) The observed frequency is given by:

\vartheta = \frac{v_{a}}{v_{a} - v_{s}}\vartheta_{o}

\vartheta = \frac{334}{334 - 80}\vartheta_{o}

\vartheta = 1.315\vartheta_{o}                (3)

Using eqn (2) and (3):

\lambda = \frac{334}{1.315} = \frac{1}{1.315}\frac{v_{a}}{\vartheta_{o}}

\lambda = 0.7604\lambda_{o}

4 0
3 years ago
An air-filled pipe is found to have successive harmonics at 945 Hz , 1215 Hz , and 1485 Hz . It is unknown whether harmonics bel
Aleonysh [2.5K]

Answer:

L = 0.635m

Explanation:

This problem involves the concept of stationary waves in pipes. For pipes closed at one end,

The frequency f = nv/4L for n = 1,3,5....n

For pipes open at both ends

f = nv/2L for n = 1,2,3,4...n

Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.

The film solution can be found in the attachment below.

8 0
3 years ago
A father places his daughter in a swing that is 0.60\,\text{m}0.60m0, point, 60, start text, m, end text above ground. Then he r
schepotkina [342]

This question involves the concepts of the law of conservation of energy and kinetic energy.

The girl's fastest speed is "3.7 m/s".

According to the law of conservation of energy, the girl will have the fastest speed at mean position, which will be calculated as follows:

Loss in Potential Energy = Gain in Kinetic Energy

mg\Delta h=\frac{1}{2}mv^2\\\\v=\sqrt{2g\Delta h}

where,

v = maximum speed = ?

g = acceleration due to gravity = 9.81 m/s²

Δh = change in height = 1.3 m - 0.6 m = 0.7 m

Therefore,

v=\sqrt{2(9.81\ m/s^2)(0.7\ m)}

<u>v = 3.7 m/s</u>

<u></u>

Learn more about the Law of Conservation of Energy here:

brainly.com/question/381281?referrer=searchResults

5 0
2 years ago
Can anyone help me with questions a and c​
Ganezh [65]

Answer:

a)

n=sin i/sin r

n= -0.305/-0.428

n=0.713

b)

sin c=1/n

sin c=1/0.713

sin c= 1.403

c=sin⁻¹(1.403)

c= 40.842°

Explanation:

i hope it will be helpful

plzzz mark as brainliest

5 0
3 years ago
A dockworker loading crates on a ship finds that a 21-kg crate, initially at rest on a horizontal surface, requires a 73-N horiz
Nataliya [291]

1) Static friction coefficient: 0.355

The crate is initially at rest. The crate remains at rest until the horizontal pushing force is less than the maximum static frictional force.

The maximum static frictional force is given by

F_s = \mu_s mg

where

\mu_s is the static coefficient of friction

m = 21 kg is the mass of the crate

g = 9.8 m/s^2 is the acceleration due to gravity

The horizontal force required to set the crate in motion is 73 N: this means that this is the value of the maximum static frictional force. So we have

F_s=73 N

Using this information into the previous equation, we can find the coefficient of static friction:

\mu_s = \frac{F}{mg}=\frac{73 N}{(21 kg)(9.8 m/s^2)}=0.355

2) Kinetic friction coefficient: 0.267

Now the crate is in motion: this means that the kinetic friction is acting on the crate, and its magnitude is

F_k = \mu_k mg (1)

where

\mu_k is the coefficient of kinetic friction

There is a horizontal force of

F = 55 N

pushing the crate. Moreover, the speed of the crate is constant: this means that the acceleration is zero, a = 0.

So we can write Newton's second law as

F-F_k = ma = 0

And by substituting (1), we can find the value of the coefficient of kinetic friction:

F-\mu_k mg = 0\\\mu_k = \frac{F}{mg}=\frac{55 N}{(21 kg)(9.8 m/s^2)}=0.267

5 0
3 years ago
Other questions:
  • A billion years ago, Earth and its moon were just 200000 kilometers apart. Express this distance in meters.​
    9·1 answer
  • Explain the origin of the magnitude designation for determining the brightness of stars. Why does it seem to go backward, with s
    14·1 answer
  • A 12 A fuse is placed in a parallel circuit that has two branches. 8 A flows in branch 1 and 6 A flows in branch 2. This fuse
    15·1 answer
  • What are some possible examples of genetic characteristics that can be passed down to child??????
    8·2 answers
  • Frost wedging occurs when water seeps into a crack in a rock, freezes, and causes the crack in the rock to widen.
    10·1 answer
  • A. Blue light has higher energy than red light. Write 3 - 4 sentences comparing these electromagnetic waves with respect to the
    5·2 answers
  • What is the potential difference across a 15Ω resistor that has a current of 3.0 A?
    10·2 answers
  • Place these bodies of our solar system in the proper order of formation.
    6·2 answers
  • According to Kepler's Third Law, a solar-system planet that has an orbital radius of 1 AU would have an orbital period of about
    11·1 answer
  • Post-Impressionist Georges Seurat is famous for a painting technique known as pointillism. His paintings are made up of differen
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!