To solve this problem we will use the linear motion description kinematic equations. We will proceed to analyze the general case by which the analysis is taken for the second car and the tenth. So we have to:

Where,
x= Displacement
= Initial velocity
a = Acceleration
t = time
Since there is no initial velocity, the same equation can be transformed in terms of length and time as:

For the second cart

When the tenth car is aligned the length will be 9 times the initial therefore:

When the tenth car has passed the length will be 10 times the initial therefore:

The difference in time taken from the second car to pass it is 5 seconds, therefore:

From the first equation replacing it in the second one we will have that the relationship of the two times is equivalent to:


From the relationship when the car has passed and the time difference we will have to:



Replacing the value found in the equation given for the second car equation we have to:

Finally we will have the time when the cars are aligned is


The time when you have passed it would be:


The difference between the two times would be:

Therefore the correct answer is C.
Answer:
option D is the correct option
Must always remain constant
Explanation:
According to their law of conservation of energy :it states that in a closed system,the total mechanical energy is always constant although energy may change from one form to another. e. g from potential energy to kinetic energy
Answer:
The difference between rotations and revolutions is , when an object turns around an internal axis (like the Earth turns around its axis) it is called a rotation. When an object circles an external axis (like the Earth circles the sun) it is called a revolution.
Explanation:
While rotation means spinning around its own axis, revolution means to move around another object. Taking the example of the Earth, which rotates 366 times to complete one revolution around the Sun.
The answer is C.
The question says the potential difference is what is changing, which means we're solving for V.
It tells us that potential difference increases by a factor of two, which just means V doubles.
With this info, we can pick some numbers, plug it into Ohms law and see what happens.
Here's an example where I just picked random numbers that are easy to work with:
V=I*R
10=I*5
I=2
Lets increase the potential difference (V) by a factor of two and see what happens to current:
V=I*R
20=I*5 (all I've done is double the potential difference from 10 to 20)
I=4
When we increase V by a factor of 2, I increases by a factor of 2. We went from I=2 to I=4.
We can increase V by factor of 2 again and see:
V=I*R
40=I*5
I=8
Okay, current just increased by a factor of 2 again when we increased the potential difference by a factor of 2.
It's always good to check work with alternate numbers, so here's one more set:
V=I*R
16=I*4
(remember, we know we're solving for V, so I'm just plugging in random numbers for I and R)
I=4
Increase V by factor of 2:
32=I*4
I=8
So, when we increase V (the potential difference) by a factor of 2, I (current) always increases by a factor of 2 as well.
Hope this helps!
The acceleration due to gravity only points downward with magnitude g. The angle of the projectile doesn't matter.