Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
Answer:
a) 0.022%
b) 10014.32 lb
Explanation:
a) Percentage uncertainty would be

Percent uncertainty is 0.022%
b) For 1 kg uncertainty mass in kg would be

Mass in pounds would be

Mass in pound-mass is 10014.32 lb
Answer:
a)1.37 s
b)∞ ( Infinite)
Explanation:
Given that
L= 47 cm ( 1 m =100 cm)
L= 0.47 m
a)
On the earth :
Acceleration due to gravity = g
We know that time period of the simple pendulum given as

Here

Now by putting the values

T=1.37 s
b)
Free falling elevator :
When elevator is falling freely then
( This is case of weightless motion)
Therefore

T=∞ (Infinite)
Find the average speed and the average velocity.
Average speed = distance / time
distance = 10 x 8000 m = 80,000 m
time = 20 min * 60 s/min = 1200 s
Average speed = 80,000 m / 1200 s = 66.67 m/s
Average velocity = displacement / time
Given that the race car made complete circles the final poin is the same initial point, then its displacement is zero and the average velocity is zero too.
Explanation:
because the acceleration is negative, this indicates a deceleration (or slowing down) . Hence we can say that:
The car is decelerating (slowing down), i.e its velocity is decreasing, at a constant rate of 5m/s².