Option (D) is the correct one.
In order to increase the amount of work done, we need to increase the force applied to the object.
Answer:
the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Explanation:
When the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Changes can occur that the gliders unite and move with a cosecant speed less than the initial one.
The whole process must be analyzed using conservation of the moment.
p₀ = m v₀
celestines que clash case
p_f = (m + M) v
po = pf
m v₀ = (n + M) v
v = 
calculemos
v= 
v= 0.09 m/s
elastic shock case
p₀ = m v₀
p_f = m v₁ +M v₂
p₀ = p_f
m v₀ = m v₁ + m v₂
To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
Answer:
Frequency
Explanation:
The frequency ( ) of a wave is the number of waves passing a point in a certain time.