Answer:
: Rocket weight on earth
: Rocket weight on moon
Explanation:
Conceptual analysis
Weight is the force with which a body is attracted due to the action of gravity and is calculated using the following formula:
W = m × g Formula (1)
W: weight
m: mass
g: acceleration due to gravity
The mass of a body on the moon is equal to the mass of a body on the earth
The acceleration due to gravity on a body is different on the moon and on the earth
Equivalences
1 slug = 14.59 kg
Known data



Problem development
To calculate the weight of the rocket on the moon and on earth we replace the data in formula (1):
: Rocket weight on earth
: Rocket weight on moon
Answer:
0.045 J
Explanation:
The work done on a charge moving through a potential difference is given by

where
W is the work done
q is the charge
is the potential difference
In this problem, we have
q = 0.0050 C is the charge
is the potential difference
Using the formula, we find the work done:

We are given that the system “releases” heat of 2,500 J,
and that it “does work on the surroundings” by 7,655 J.
The highlighted words releases and does work on the surroundings
all refers to that it is the system itself which expends energy to do those
things. Therefore the action of releasing heat and doing work has both magnitudes
of negative value. Therefore:
heat released = - 2, 500 J
work done = - 7, 655 J
Which means that the total internal energy change of the
system is:
change in internal energy = heat released + work
<span>change in internal energy = - 2, 500 J + - 7, 655 J</span>
<span>change in internal energy = -10,155 J</span>