Answer:
Option A applies.
A. Greater than its escape speed from the mass within the volume
Explanation:
Here it is mentioned that the spherical volume is large enough for the space to be considered as homogeneous. Also, the pressure within the volume is negligible, so that will not result into the re collapse of the Universe. Now as per our knowing, Hubble's Law relates the average speed of the particle to the distance R between the Earth and the particle. So, if the particle's speed is greater than it's escape speed from the mass within the volume, then the Universe is bound to re collapse back again. Option A applies.
Weathering and rock slides
In other words a infinitesimal segment dV caries the charge
<span>dQ = ρ dV </span>
<span>Let dV be a spherical shell between between r and (r + dr): </span>
<span>dV = (4π/3)·( (r + dr)² - r³ ) </span>
<span>= (4π/3)·( r³ + 3·r²·dr + 3·r·(dr)² + /dr)³ - r³ ) </span>
<span>= (4π/3)·( 3·r²·dr + 3·r·(dr)² + /dr)³ ) </span>
<span>drop higher order terms </span>
<span>= 4·π·r²·dr </span>
<span>To get total charge integrate over the whole volume of your object, i.e. </span>
<span>from ri to ra: </span>
<span>Q = ∫ dQ = ∫ ρ dV </span>
<span>= ∫ri→ra { (b/r)·4·π·r² } dr </span>
<span>= ∫ri→ra { 4·π·b·r } dr </span>
<span>= 2·π·b·( ra² - ri² ) </span>
<span>With given parameters: </span>
<span>Q = 2·π · 3µC/m²·( (6cm)² - (4cm)² ) </span>
<span>= 2·π · 3×10⁻⁶C/m²·( (6×10⁻²m)² - (4×10⁻²m)² ) </span>
<span>= 3.77×10⁻⁸C </span>
<span>= 37.7nC</span>
Force required is 100 N
<u>Given that;</u>
Rate of acceleration = 5 m/s²
Mass of object = 20kg
<u>Find:</u>
Force required
<u>Computation:</u>
Force = Mass × Acceleration
Force required = Rate of acceleration × Mass of object
Force required = 20 × 5
Force required = 100 N
Learn more:
brainly.com/question/17506203?referrer=searchResults
Answer:
Simple harmonic motion is the movement of a body or an object to and from an equilibrium position. In a simple harmonic motion, the maximum displacement (also called the amplitude) on one side of the equilibrium position is equal to the maximum displacement.
The force acting on an object must satisfy Hooke's law for the object to undergo simple harmonic motion. The law states that the force must be directed always towards the equilibrium position and also directly proportional to the distance from this position.