The image is missing (however it's not necessary to solve the problem).
The correct answer is A) decreases, because the gravitational force is inversely proportional to the square of the distance. In fact, the magnitude of the gravitational force between two object of mass M and m, at a distance d one from each other, is

where G is the gravitational constant. As can be seen from the formula, if the distance d between the two object increases, the intensity of the force decreases.
solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m
Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
Answer:
1050 kg
Explanation:
The formula for kinetic energy is:
KE (kinetic energy) = 1/2 × m × v² where <em>m</em> is the <em>mass in kg </em>and <em>v</em> is the velocity or <em>speed</em> of the object <em>in m/s</em>.
We can now substitute the values we know into this equation.
KE = 472 500 J and v = 30 m/s:
472 500 = 1/2 × m × 30²
Next, we can rearrange the equation to make m the subject and solve for m:
m = 472 500 ÷ (1/2 × 30²)
m = 472 500 ÷ 450
m = 1050 kg
Hope this helps!
Answer:
Question 1)
a) The speed of the drums is increased from 2 ft/s to 4 ft/s in 4 s. From the below kinematic equations the acceleration of the drums can be determined.

This is the linear acceleration of the drums. Since the tape does not slip on the drums, by the rule of rolling without slipping,

where α is the angular acceleration.
In order to continue this question, the radius of the drums should be given.
Let us denote the radius of the drums as R, the angular acceleration of drum B is
α = 0.5/R.
b) The distance travelled by the drums can be found by the following kinematics formula:

One revolution is equal to the circumference of the drum. So, total number of revolutions is

Question 2)
a) In a rocket propulsion question, the acceleration of the rocket can be found by the following formula:

b) 