A heavy truck moving a 30 mph. It has more mass.
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²
Radar waves are the waves with the lowest energy.
Velocity, va2 = 10.5 ft/s
<u>Explanation:</u>
From the figure:
Length of the cable = Sa + 2Sb = l
∴ vₐ = -2vb
Applying the principle of Impulse and momentum in x-direction

Limit is t1 to t2
-(1)
Applying the principle of Impulse and momentum in y-direction

Limit is t1 to t2
-(2)
Solving equation (1) and (2), we obtain
T = 1.6lb
va2 = 10.5 ft/s
Answer:
In physics, special relativity (also known as the special theory of relativity) is the generally accepted and experimentally confirmed physical theory regarding the relationship between space and time.
We need special relativity in order to solve for quantum gravity. ... The earth was expanding (thus, it's mass was expanding) through space in all directions in order to create gravity **OOPS** forgot, specifically at an accelerating rate… OR… The space must be pushing toward or down on the earth, from every direction.