Answer:
Bacteria. These one-cell organisms are responsible for illnesses such as strep throat, urinary tract infections and tuberculosis.
Viruses. Even smaller than bacteria, viruses cause a multitude of diseases ranging from the common cold to AIDS.
Fungi. ...
Parasites.
Example:Infectious diseases are disorders caused by organisms — such as bacteria, viruses, fungi or parasites. Many organisms live in and on our bodies. They're normally harmless or even helpful. But under certain conditions, some organisms may cause disease.
Answer:
As stated in Chapter 1, the translation of human energy requirements into recommended intakes of food and the assessment of how well the available food supplies or diets of populations (or even of individuals) satisfy these requirements require knowledge of the amounts of available energy in individual foods. Determining the energy content of foods depends on the following: 1) the components of food that provide energy (protein, fat, carbohydrate, alcohol, polyols, organic acids and novel compounds) should be determined by appropriate analytical methods; 2) the quantity of each individual component must be converted to food energy using a generally accepted factor that expresses the amount of available energy per unit of weight; and 3) the food energies of all components must be added together to represent the nutritional energy value of the food for humans. The energy conversion factors and the models currently used assume that each component of a food has an energy factor that is fixed and that does not vary according to the proportions of other components in the food or diet.
Explanation:
The unit of energy in the International System of Units (SI)[8] is the joule (J). A joule is the energy expended when 1 kg is moved 1 m by a force of 1 Newton. This is the accepted standard unit of energy used in human energetics and it should also be used for the expression of energy in foods. Because nutritionists and food scientists are concerned with large amounts of energy, they generally use kiloJoules (kJ = 103 J) or megaJoules (MJ = 106 J). For many decades, food energy has been expressed in calories, which is not a coherent unit of thermochemical energy. Despite the recommendation of more than 30 years ago to use only joules, many scientists, non-scientists and consumers still find it difficult to abandon the use of calories. This is evident in that both joules (kJ) and calories (kcal) are used side by side in most regulatory frameworks, e.g. Codex Alimentarius (1991). Thus, while the use of joules alone is recommended by international convention, values for food energy in the following sections are given in both joules and calories, with kilojoules given first and kilocalories second, within parenthesis and in a different font (Arial 9). In tables, values for kilocalories are given in italic type. The conversion factors for joules and calories are: 1 kJ = 0.239 kcal; and 1 kcal = 4.184 kJ.
Answer:
This is a use primarily for incidence data
Explanation:
Prevalence is basically representation of proportion of population with certain characteristic occurring in a given period of time.
The general mathematical equation for the same is number of people with certain characteristics in a given population divided by total number of people in this population
It is generally reported as % or number of people with the characteristic of interest per 10,000 or 1,00,000 people
Incidence on the other hand is the representation of new cases arising in a given population in a specified time period.
Direct estimate of risk can be determined by quoting new cases arising in a given population
This is a use primarily for incidence data