Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g
<span>Since the force is applied at an angle from the
horizontal, we will use the horizontal component of this force in calculating
for the displacements.
From derivation, the Fx is:</span>
Fx = F cos φ
Where:
Fx = is the horizontal component of the force
F = total force
φ =
angle in radian = 37 * pi / 180 = 0.645 rad
Calculating: Fx = 30.0 N * cos(0.645)
Fx = 23.97 N = 24 N
Calculating for Work: W = Fx * d
A. W = 24 N * 15 m = 360 N
B. W = 24 N * 16 m = 384 N
C. W = 24 N * 12 m = 288 N
D. W = 24 N * 14 m = 336 N
Answer:
Final speed of the crate is 15 m/s
Explanation:
As we know that constant force F = 80 N is applied on the object for t = 12 s
Now we can use definition of force to find the speed after t = 12 s

so here we know that object is at rest initially so we have


Now for next 6 s the force decreases to ZERO linearly
so we can write the force equation as

now again by same equation we have



put t = 6 s



Answer:
Average velocity = 30 miles per hour
Explanation:
Given that
Velocity for uphill = 20 miles per hour
Velocity for downhill = 60 miles per hour
We know that
Distance = Velocity x time
Total distance = Average velocity x total time
Lets take distance from home to school is s
Time taken from home to school= s/20 hr
Time taken from school to home= s/60 hr
Total time =s/20+s/60
Total distance = Average velocity x total time
s + s = Average velocity x (s/20+s/60)
So average velocity = 30 miles per hour