1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
3 years ago
6

D Question 14 2 pts The universe could be considered an isolated system because

Physics
1 answer:
Blizzard [7]3 years ago
5 0

Answer:

it would help if we knew the question and other answers

Explanation:

You might be interested in
Consider a uniform hoop of radius r and mass m rolling without slipping. which is larger, its translational kinetic energy or it
OlgaM077 [116]
<span>translational kinetic energy is larger than its rotational kinetic energy</span>
3 0
3 years ago
At a baseball game, Bill observes from the bleachers Jack throwing a ball toward home at 15 km/s while Kevin runs toward home fr
sattari [20]

Answer:bill 5 m/s. Jack:10 m/s

Explanation:

Cuz I took it

7 0
3 years ago
In an equation f = l^2-d^2/4l the intercept is<br>​
DanielleElmas [232]

Answer:

the intercept is the orgin (0,0)

5 0
3 years ago
An electron is initially moving at 1.4 x 107 m/s. It moves 3.5 m in the direction of a uniform electric field of magnitude 120 N
algol13

Answer:

K.E = 15.57 x 10⁻¹⁷ J

Explanation:

First, we find the acceleration of the electron by using the formula of electric field:

E = F/q

F = Eq

but, from Newton's 2nd Law:

F = ma

Comparing both equations, we get:

ma = Eq

a = Eq/m

where,

E = electric field intensity = 120 N/C

q = charge of electron = 1.6 x 10⁻¹⁹ C

m = Mass of electron = 9.1 x 10⁻³¹ kg

Therefore,

a = (120 N/C)(1.6 x 10⁻¹⁹ C)/(9.1 x 10⁻³¹ kg)

a = 2.11 x 10¹³ m/s²

Now, we need to find the final velocity of the electron. Using 3rd equation of motion:

2as = Vf² - Vi²

where,

Vf = Final Velocity = ?

Vi = Initial Velocity = 1.4 x 10⁷ m/s

s = distance = 3.5 m

Therefore,

(2)(2.11 x 10¹³ m/s²)(3.5 m) = Vf² - (1.4 x 10⁷)²

Vf = √(1.477 x 10¹⁴ m²/s² + 1.96 x 10¹⁴ m²/s²)

Vf = 1.85 x 10⁷ m/s

Now, we find the kinetic energy of electron at the end of the motion:

K.E = (0.5)(m)(Vf)²

K.E = (0.5)(9.1 x 10⁻³¹ kg)(1.85 x 10⁷ m/s)²

<u>K.E = 15.57 x 10⁻¹⁷ J</u>

4 0
3 years ago
Water moves through a constricted pipe in steady, ideal flow. At the
Irina-Kira [14]

A) Speed in the lower section: 0.638 m/s

B) Speed in the higher section: 2.55 m/s

C) Volume flow rate: 1.8\cdot 10^{-3} m^3/s

Explanation:

A)

To solve the problem, we can use Bernoulli's equation, which states that

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2

where

p_1=1.75\cdot 10^4 Pa is the pressure in the lower section of the tube

h_1 = 0 is the heigth of the lower section

\rho=1000 kg/m^3 is the density of water

g=9.8 m/s^2 is the acceleration of gravity

v_1 is the speed of the water in the lower pipe

p_2 is the pressure in the higher section

h_2 = 0.250 m is the height in the higher pipe

v_2 is hte speed in the higher section

We can re-write the equation as

v_1^2-v_2^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho} (1)

Also we can use the continuity equation, which state that the volume flow rate is constant:

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-section of the lower pipe, with

r_1 = 3.00 cm =0.03 m is the radius of the lower pipe (half the diameter)

A_2 = \pi r_2^2 is the cross-section of the higher pipe, with

r_2 = 1.50 cm = 0.015 m (radius of the higher pipe)

So we get

r_1^2 v_1 = r_2^2 v_2

And so

v_2 = \frac{r_1^2}{r_2^2}v_1 (2)

Substituting into (1), we find the speed in the lower section:

v_1^2-(\frac{r_1^2}{r_2^2})^2v_1^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho}\\v_1=\sqrt{\frac{2(p_2-p_1+\rho g h_2)}{\rho(1-\frac{r_1^4}{r_2^4})}}=0.638 m/s

B)

Now we can use equation (2) to find the speed in the lower section:

v_2 = \frac{r_1^2}{r_2^2}v_1

Substituting

v1 = 0.775 m/s

And the values of the radii, we find:

v_2=\frac{0.03^2}{0.015^2}(0.638)=2.55 m/s

C)

The volume flow rate of the water passing through the pipe is given by

V=Av

where

A is the cross-sectional area

v is the speed of the water

We can take any point along the pipe since the volume  flow rate is constant, so

r_1=0.03 cm

v_1=0.638 m/s

Therefore, the volume flow rate is

V=\pi r_1^2 v_1 = \pi (0.03)^2 (0.638)=1.8\cdot 10^{-3} m^3/s

Learn more about pressure in a liquid:

brainly.com/question/9805263

#LearnwithBrainly

0 0
3 years ago
Other questions:
  • When fossil fuels are burned, they release oxides of ____________________ and ____________________.
    5·2 answers
  • Which is the best location for storing radioactive wastes?
    15·2 answers
  • What happens to magnetic domains when you pull magnets apart and the magnetic field weakens?
    10·1 answer
  • Number 12 gauge wire, commonly used in household wiring, is 2.053mm in diameter and can safely carry up to 20A. For a wire carry
    15·1 answer
  • Why is cancer so horrible
    12·2 answers
  • A safe weight loss plan recommends a weight loss of no more than __________ pounds per week
    7·2 answers
  • "an open tank has the shape of a right circular cone. the tank is 6 feet across the top and 5 feet high. how much work is done i
    15·1 answer
  • Which is easier for a beginner? (This is for archery)<br><br> O long bow<br><br> O recurve bow
    5·2 answers
  • A force of 4 kg weight acts on a body of mass 9.8 kg calculate the acceleration
    11·2 answers
  • WHAT IS THE DIRECT PATH DIRECTION FROM POINT A TO B
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!