1. The change in momentum follows the formula:
Change in Momentum = mΔv,
where m is the mass and v is the velocity
Change in momentum = (700 kg)(15 m/s - 30 m/s) =<em> -10,500 kg·m/s</em>
2. For this problem, the formula for impulse, J, is
J = FΔt
Before answering part a, we answer for part b first.
Part B.
F = ma
where
a = Δv/t = (15 - 30)/5 = -1 m/s²
So,
F = (700 kg)(-1 m/s²) = <em>-700 N</em>
Part A.
J = (-700 N)(5 s) =<em> -3,500 N·s</em>
The gravitational force of two objects, by definition, is given by:

Where,
G: gravitational constant
m1: mass of object number 1.
m2: mass of object number 2.
d: distance between both objects.
Therefore, according to the given equation, a change that always results in an increase in gravitational force is:
Increase in the mass of the objects and decrease in the distance between them.
Answer:
A change that will always result in an increase in the gravitational force between two objects is:
Increase in the mass of the objects and decrease in the distance between them.
Answer:
a)
= 4.67m/s
b) V = 8.29 m/s
Explanation:
Givens:
The bullet is 5.30g moving at 963m/s and its speed reduced to 426m/s. The wooden block is 610g.
a) From conservation of linear momentum
Pi = Pf

where
are the mass and the initial velocity of the bullet,
and
are the mass and the initial velocity of the wooden block, and
and
are the final velocities of the wooden block and the bullet
The wooden block is initial at rest
this yields

By solving for
adn substitute the givens
= 
= 
= 4.67m/s
b) The center of mass speed is defined as

substituting:

V = 8.29 m/s
The technical definition of latitude is the angular distance north or south from the earth's equator measured through 90 degrees. ... Locations at lower latitudes receive stronger and more direct sunlight than locations near the poles. Energy input from the sun is the main driving force in the atmosphere.
The Seasons at Different Latitudes
The seasonal effects are different at different latitudes on Earth. Near the equator, for instance, all seasons are much the same. Every day of the year, the Sun is up half the time, so there are approximately 12 hours of sunshine and 12 hours of night.
When we consider Latitude alone as a control, we know that the low latitudes (say from the Equator to approximately 30 degrees N/S) are the warmest across the year (on an annual basis).