Another product: CO₂
<h3>Further explanation</h3>
Given
Reaction
2C₄H₁₀ + 13O₂⇒ 8__+ 10H₂O
Required
product compound
Solution
In the combustion of hydrocarbons there can be 2 kinds of products
If there is excess Oxygen, you will get Carbon dioxide(CO₂) and water in the product
If Oxygen is low, you'll get Carbon monoxide(CO) and water
Or in other ways, we can use the principle of the law of conservation of mass which is also related to the number of atoms in the reactants and in the products
if we look at the reaction above, there are C atoms on the left (reactants), so that in the product there will also be C atoms with the same number of C atoms on the left
2C₄H₁₀ + 13O₂⇒ 8CO₂+ 10H₂O
Answer:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
The coefficients are 3, 1, 3, 1
Explanation:
From the question given above, the following data were:
Silver chloride reacts with sodium phosphate to yield sodium chloride and silver phosphate. This can be written as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
The above equation can be balanced as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
There are 3 atoms of Na on the left side and 1 atom on the right side. It can be balance by putting 3 in front of NaCl as shown below:
AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
There are 3 atoms of Cl on the right side and 1 atom on the left. It can be balance by putting 3 in front of AgCl as shown below:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
Thus, the equation is balanced.
The coefficients are 3, 1, 3, 1
The empirical formula for the unknown compound would be: C2H4O (2 molecules of Carbon, 4 molecules of Hydrogen, and 1 molecule of Oxygen)
Answer:
Anything not on the periodic table is an element non example! ... So, for a substance to be an element, all of its atoms must have the same number of protons. Examples of elements include hydrogen, lithium, nickel, and radium.
Explanation:
"Indoor environments are much less polluted than outdoor <span>environments" is the best option since indoor environments often rely on separate air and ventilation systems. </span>