Answer: 5.44×10226.022140857(74)×1023⋅mol−1.
Explanation: So the answer is approx. 0.10⋅mol
Answer:
The molar mass of the gas is 36.25 g/mol.
Explanation:
- To solve this problem, we can use the mathematical relation:
ν = 
Where, ν is the speed of light in a gas <em>(ν = 449 m/s)</em>,
R is the universal gas constant <em>(R = 8.314 J/mol.K)</em>,
T is the temperature of the gas in Kelvin <em>(T = 20 °C + 273 = 293 K)</em>,
M is the molar mass of the gas in <em>(Kg/mol)</em>.
ν = 
(449 m/s) = √ (3(8.314 J/mol.K) (293 K) / M,
<em>by squaring the two sides:</em>
(449 m/s)² = (3 (8.314 J/mol.K) (293 K)) / M,
∴ M = (3 (8.314 J/mol.K) (293 K) / (449 m/s)² = 7308.006 / 201601 = 0.03625 Kg/mol.
<em>∴ The molar mass of the gas is 36.25 g/mol.</em>
<span>Yes. If you put solutions containing the same concentration table salt, glucose and starch in different bags and place the bags in water (i.e., 0M) solution, then the bag with salt will contain more water after 15 minutes than the bag with glucose, which will contain more than the bag with starch.</span>
This reaction is most likely to fall under SN2 because the
thing called carbonication does not occur in SN1. The carbon forms a partial
bond with the nucleophile during the intermediate phase and the leaving group.
So for this question the reaction will fall under SN2.
Answer:
A) wrong. The molar is same so A is hevier
B)
Explanation:
Xg/mol × (same molar)= g
→ bigger molar bigger mass