The answer is A] 2x -4 = -14
2(-5) -4 = -14
-10 -4 = -14
-14 = -14
Answer:
-3b³ + 3ab - a + 10
Step-by-step explanation:
2a³ - 3b³ + 7 - a³ + b³ + 3ab - a - (a³+b³-3)
2a³ - 3b³ + 7 - a³ + b³ + 3ab - a - a³ - b³ + 3
-3b³ + 3ab - a + 10
Given two points

and

The distance between them is >>>
![D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}](https://tex.z-dn.net/?f=D%3D%5Csqrt%5B%5D%7B%28y_2-y_1%29%5E2%2B%28x_2-x_1%29%5E2%7D)
The points given are (Sqrt(20), Sqrt(50)) and (Sqrt(125), Sqrt(8)), so their distance is >>>
![\begin{gathered} D=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2} \\ D=\sqrt[]{(\sqrt[]{8}-\sqrt[]{50})^2+(\sqrt[]{125}-\sqrt[]{20})^2} \\ D=\sqrt[]{(\sqrt8)^2-2(\sqrt[]{8})(\sqrt[]{50})+(\sqrt[]{50})^2^{}+(\sqrt[]{125})^2-2(\sqrt[]{125})(\sqrt[]{20})+(\sqrt[]{20})^2} \\ D=\sqrt[]{8-2(2\sqrt[]{2})(5\sqrt[]{2})+50+125-2(5\sqrt[]{5})(2\sqrt[]{5})+20} \\ D=\sqrt[]{8-40+50+125-100+20} \\ D=\sqrt[]{63} \\ D=3\sqrt[]{7} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%28y_2-y_1%29%5E2%2B%28x_2-x_1%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28%5Csqrt%5B%5D%7B8%7D-%5Csqrt%5B%5D%7B50%7D%29%5E2%2B%28%5Csqrt%5B%5D%7B125%7D-%5Csqrt%5B%5D%7B20%7D%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28%5Csqrt8%29%5E2-2%28%5Csqrt%5B%5D%7B8%7D%29%28%5Csqrt%5B%5D%7B50%7D%29%2B%28%5Csqrt%5B%5D%7B50%7D%29%5E2%5E%7B%7D%2B%28%5Csqrt%5B%5D%7B125%7D%29%5E2-2%28%5Csqrt%5B%5D%7B125%7D%29%28%5Csqrt%5B%5D%7B20%7D%29%2B%28%5Csqrt%5B%5D%7B20%7D%29%5E2%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B8-2%282%5Csqrt%5B%5D%7B2%7D%29%285%5Csqrt%5B%5D%7B2%7D%29%2B50%2B125-2%285%5Csqrt%5B%5D%7B5%7D%29%282%5Csqrt%5B%5D%7B5%7D%29%2B20%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B8-40%2B50%2B125-100%2B20%7D%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B63%7D%20%5C%5C%20D%3D3%5Csqrt%5B%5D%7B7%7D%20%5Cend%7Bgathered%7D)
----------------------------------------------------------------------------------------------------------
The midpoint formula is >>>

Plugging in the points, we have >>>
Answer:
-3/12
Step-by-step explanation:
Answer:
6w^2 + 11w +8w^2 + 15w -2
Get same power near,
6w^2 + 8w^2 + 11<em>w</em> + 15<em>w</em> -2
w^2 (6 + 8) + <em>w(11</em> + 15) -2
14w^2 +26w-2
Yes equivalent
Step-by-step explanation: