Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
 
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
 
- Speed of light (c): 3.00 × 10⁸ m/s
 
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
 
        
             
        
        
        
Answer:
2 CrO42- + 3N2O + 10 H+ -----> 2Cr3+ + 6NO + 5H2O
Explanation:
2 CrO42- + 3N2O + 10 H+ -----> 2Cr3+ + 6NO + 5H2O
Oxidizing agent: -----------------------------> CrO42-
Reducing agent: ----------------------------> N2O
explanation:
in CrO4-2 oxdiation state of Cr = +6
in Cr+3 oxidation state = +3
+6 oxidation state changed from +3 it is reduction . 
so CrO4-2 is oxidizing agent
atomatically
 N2O should be reducing agent
 
        
             
        
        
        
The first one is the correct answer: <span>The potential energy of the products is greater than that of the reactants and the change in enthalpy is positive.<span> </span></span>