Answer:
36.92 mg of oxygen required for bio-degradation.
Explanation:

Mass of benzene = 30 mg = 0.03 g (1000 mg = 1 g )
Moles benzene =
According to reaction 5 moles of benzene reacts with 15 moles of oxygen gas.
Then 0.0003846 mol of benzene will react with:
of oxygen gas
Mass of 0.0011538 moles of oxygen gas:
0.0011538 mol × 32 g/mol = 0.03692 g = 36.92 mg
36.92 mg of oxygen required for bio-degradation.
<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
The answer is Three
!!!!!!
To solve this question, you must use the formula: q=mc(change in temperature), where q is heat, m is mass, C is specific heat and temperature change is temperature change. The specific heat for ice is 2.1kJ/Kg x K (given). The change in temperature is 15 degrees Celsius (which you should change to kelvins so you can cancel out units), or 273 + 15 = 288K. The mass is 150 grams, which is 0.15 kg. Now, we can solve for q, heat. We will do this by substituting variables into the formula. After simplifying and cancelling out units, the answer we get is: 90.72kJ.
Huh. Is this supposed to be biology?