$14.00
fee for a Law and rule book
Answer:
A precipitation reaction refers to the formation of an insoluble salt when two solutions containing soluble salts are combined. The insoluble salt that falls out of solution is known as the precipitate, hence the reaction's name.
Explanation:
substitute: <span><span>t<span>1/2</span></span>=<span><span>ln(2)</span>k</span>→k=<span><span>ln(2)</span><span>t<span>1/2</span></span></span></span>
Into the appropriate equation: <span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−kt</span></span></span>
<span>[A<span>]t</span>=[A<span>]0</span>∗<span>e<span>−<span><span>ln(2)</span><span>t<span>1/2</span></span></span>t</span></span></span>
<span>[A<span>]t</span>=(250.0 g)∗<span>e<span>−<span><span>ln(2)</span><span>3.823 days</span></span>(7.22 days)</span></span>=67.52 g</span>
Explanation:
The given data is as follows.
(NaCl) = 
(H-O=C-ONO) = 
(HCl) = 
Conductivity of monobasic acid is 
Concentration = 0.01 
Therefore, molar conductivity (
) of monobasic acid is calculated as follows.

= 
= 
= 
Also,
= 
= 
= 
Relation between degree of dissociation and molar conductivity is as follows.

= 
= 0.1254
Whereas relation between acid dissociation constant and degree of dissociation is as follows.
K = 
Putting the values into the above formula we get the following.
K = 
= 
= 
= 
Hence, the acid dissociation constant is
.
Also, relation between
and
is as follows.

= 
= 3.7454
Therefore, value of
is 3.7454.