In artificial transmutations the nucleus is bombarded with high-energy (kinetics energy) particles to induce transmutation. There are two reactants or the nucleus that is being bombarded and the high-energy particle.
<span>High-energy particles are accelerated in accelerators, by the application of electric and magnetic fields. Neutrons cannot be accelerated in accelerators using electric and magnetic fields because their charge is 0.
I hope my answer has come to your help. God bless and have a nice day ahead!
</span>
A word equation is a chemical reaction described using words.
A common example is the act of photosynthesis - the process plants use to make glucose (sugar) to use as 'food'.
Plants convert water and carbon dioxide into oxygen and glucose.
A word equation to express this is:
Water + Carbon Dioxide → Glucose + Oxygen
The other type of equation is a symbol equation - this uses the symbols of the elements instead of the common names:
H₂O + CO₂ → C₆H₁₂O₆ + O₂
There is also a balanced version:
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
<em>If you want information on the balanced symbol equations, feel free to PM me.</em>
Answer:
There are other details missing in the question. i.e Assume that x is much larger than the separation d between the charges in the dipole, so that the approximate expression for the electric field along the dipole axis E = p/2πε0y3 can be used, where p is the dipole moment, and y is the distance between ions. A) What is magnitude______N B) Direction? +x-direction or -x-direction C) Is this force attractive or repulsive?
A) Magnitude of electric force = 6.576 x 10 raised to power -13 N
B) Since the force direction is always dependent on the electric field and electric field = F/q, since the chlorine has a negative charge as such the direction of the electric force will be in the X - direction
C) Since the charges are of different nature, as such the force between them will be ATTRACTIVE.
Explanation:
The detailed steps is shown in the attachment
The answer is A I’m not 100 percent sure tho
Answer:
Molar mass of NaHCO3 = 84.00661 g/mo
Explanation:
This compound is also known as Baking Soda or Sodium Bicarbonate.
Convert grams NaHCO3 to moles or moles NaHCO3 to grams
Molecular weight calculation:
22.98977 + 1.00794 + 12.0107 + 15.9994*3