Answer:
the answer is -1
Step-by-step explanation:
C is correct. So it’s asking given any whole number Squared you will get another whole number squared but in reality there are only a few numbers like that and they are called perfect squares(4 16 36 81 121)
is simply the difference of both amounts, but firstly let's convert the mixed fractions to improper, and subtract.
![\bf \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\\\ \stackrel{mixed}{6\frac{7}{16}}\implies \cfrac{6\cdot 16+7}{16}\implies \stackrel{improper}{\cfrac{103}{16}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{Jessie}{\cfrac{103}{16}}-\stackrel{Bryce}{\cfrac{9}{2}}\implies \stackrel{\textit{our LCD is 16}}{\cfrac{(1)103-(8)9}{16}}\implies \cfrac{103-72}{16}\implies \cfrac{31}{16}\implies 1\frac{15}{16}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B7%7D%7B16%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%2016%2B7%7D%7B16%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B103%7D%7B16%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cstackrel%7BJessie%7D%7B%5Ccfrac%7B103%7D%7B16%7D%7D-%5Cstackrel%7BBryce%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bour%20LCD%20is%2016%7D%7D%7B%5Ccfrac%7B%281%29103-%288%299%7D%7B16%7D%7D%5Cimplies%20%5Ccfrac%7B103-72%7D%7B16%7D%5Cimplies%20%5Ccfrac%7B31%7D%7B16%7D%5Cimplies%201%5Cfrac%7B15%7D%7B16%7D)
Answer:
Step-by-step explanation:
Associative property
Answer:
q= -3
Step-by-step explanation: