The only thing you need to put the followings into correct order is to remember that the smalles mass - the less volume it has. So, accordnig to this, the order should be like that : An ice crystal- A water molecule-An oxygen atom-The electron cloud-<span>An oxygen nucleus. Hope you will find it helpful!</span>
Answer:The answer to this question comes from experiments done by the scientist Robert Boyle in an effort to improve air pumps. In the 1600's, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of gas at a constant temperature is increased, the volume of the gas decreases. when the pressure of gas is decreased, the volume increases. this relationship between pressure and volume is called Boyle's law.
Explanation: So, at constant temperature, the answer to your answer is: the volume decreases in the same ratio as the ratio of pressure increases.
BUT, in general, there is not a single answer to your question. It depend by the context.
For example, if you put the gas in a rigid steel tank (volume is constant), you can heat the gas, so provoking a pressure increase. But you won't get any change in volume.
Or, if you heat the gas in a partially elastic vessel (as a tire or a soccer ball) you will get both an increase of volume AND an increase of pressure.
FINALLY if you inflate a bubblegum ball, the volume will be increased without any change in pressure and temperature, because you have increased the NUMBER of molecules in the balloon.
There are many other ways to change volume and pressure of a gas that are different from the Boyle experiment.
Answer:
200 lb•ft/s
Explanation:
From the question given above, the following data were obtained:
Force (F) = 2 tons
Time (t) = 5 mins
Height (h) = 15 ft
Power (P) =?
Next, we shall convert 2 tons to pound. This can be obtained as follow:
1 ton = 2000 lb
Therefore,
2 tons = 2 × 2000
2 tons = 4000 lb
Next, we shall convert 5 mins to seconds. This can be obtained as follow:
1 min = 60 s
Therefore,
5 mins = 5 × 60
5 mins = 300 s
Finally, we shall determine the power of the pump. This can be obtained as follow:
Force (F) = 4000 lb
Time (t) = 300 s
Height (h) = 15 ft
Power (P) =?
P = F × h / t
P = 4000 × 15 / 300
P = 60000 / 300
P = 200 lb•ft/s
Thus, the power of the pump is 200 lb•ft/s
Answer:
<em>K</em><em>+</em><em>Cl</em><em /><em>KCl</em>
Explanation:
because the reaction is between metal Potassium and Non-metal Chlorine
And the significant amount of volume can be differed by its solitude