Answer:
Q = 60192 j
Explanation:
Given data:
Volume of water = 0.45 L
Initial temperature = 23°C
Final temperature = 55°C
Amount of heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55°C - 23°C
ΔT = 32°C
one L = 1000 g
0.45 × 1000 = 450 g
Specific heat capacity of water is 4.18 j/g°C
Q = m.c. ΔT
Q = 450 g. 4.18 j/g°C. 32°C
Q = 60192 j
Its atomic symbol is H and its atomic number is one. Hydrogen; Hydrogen, H, is a chemical element with atomic number 1. At standard temperature and pressure, hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2.
Hydrogen is easily the most abundant element in the universe. It is found in the sun and most of the stars, and the planet Jupiter is composed mostly of hydrogen. On Earth, hydrogen is found in the greatest quantities as water.
Answer:
Check the explanation
Explanation:
When,
pH = -log[H+] = 3.30
[H+] = 

![alpha[Y^-4] = [H+]^6 + Ka1[H+]^5 + Ka1Ka2[H+]^4 + Ka1Ka2Ka3[H+]^3 + Ka1Ka2Ka3Ka4[H+]^2 + Ka1Ka2Ka3Ka4Ka5[H+] + Ka1Ka2Ka3Ka4Ka5Ka6](https://tex.z-dn.net/?f=alpha%5BY%5E-4%5D%20%3D%20%5BH%2B%5D%5E6%20%2B%20Ka1%5BH%2B%5D%5E5%20%2B%20Ka1Ka2%5BH%2B%5D%5E4%20%2B%20Ka1Ka2Ka3%5BH%2B%5D%5E3%20%2B%20Ka1Ka2Ka3Ka4%5BH%2B%5D%5E2%20%2B%20Ka1Ka2Ka3Ka4Ka5%5BH%2B%5D%20%2B%20Ka1Ka2Ka3Ka4Ka5Ka6)
= 
= 
When,
pH = -log[H+] = 10.15
[H+] = 
Ka1 = 1 ; Ka2 = 0.0316 ; Ka3 = 0.01 ; Ka4 = 0.002 ; Ka5 =
; Ka6 = 
= 
= 
Answer:
6 x 10⁵ kg Hg
Explanation:
The mass of mercury in the entire lake is found by multiplying the concentration of the mercury by the volume of the lake.
The volume of the lake is calculated in cubic feet:
V = (SA)x(depth) = (100mi²)(5280ft/mi)² x (20ft) = 5.57568 x 10¹⁰ ft³
Cubic feet are then converted to mL (1cm³=1mL)
(5.57568 x 10¹⁰ ft³) x (12in/ft)³ x (2.54cm/in)³ = 1.578856752 x 10¹⁵ mL
The mass of mercury is then found:
m = CV = (0.4μg/mL)(1g/10⁶μg)(1kg/1000g) x (1.578856752 x 10¹⁵ mL) = 6 x 10⁵ kg Hg
Answer:
3 will be the correct coefficient of CaBr2
Explanation:
In balancing a chemical equation, numbers should be assigned to both reactants and products as a numerical coefficients until all atoms of elements in both sides of the equation count equal.
The balanced equation of the reaction will be:
3CaSO4 + 2AlBr3 ==> 3CaBr2 + Al2(SO4)3
Looking at the unbalanced equation in the question, in the product Al2(SO4)3 there are 3 SO4 group. This will warrant putting 3 behind CaSO4 in order to balance the atoms of SO4 group. That operation will automatically put the number of Ca atoms in CaSO4 to be 3 therefore making CaBr2 to have 3 coefficient as in the balanced equation. This is to balance the number of Ca atoms in both sides to be 3.