1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
10

Solve the following equation for x. x^2 - 36 = 0

Mathematics
1 answer:
Ilia_Sergeevich [38]3 years ago
4 0
X = -6, x = 6
option c
You might be interested in
3x+6/x^2-x-6+2x/x^2+x-12
Tanzania [10]
\dfrac{3x+6}{x^2-x-6} +  \dfrac{2x}{x^2+x-12}

= \dfrac{3(x+2)}{(x + 2)(x - 3)} +  \dfrac{2x}{ (x - 3)(x + 4)}

= \dfrac{3}{(x - 3)} +  \dfrac{2x}{ (x -3)(x + 4)}

= \dfrac{3(x+4)}{(x - 3)(x + 4)} +  \dfrac{2x}{ (x -3 )(x + 4)}

= \dfrac{3(x+4) + 2x }{(x - 3)(x + 4)}

= \dfrac{3x+12 + 2x }{(x - 3)(x + 4)}

= \dfrac{5x+12}{(x - 3)(x + 4)}



6 0
3 years ago
Cual es el 15% de 36000?
zimovet [89]
15% = 15/100 = 0,15

36000•0,15=5400
4 0
3 years ago
Find the distance between the points given. (0,5) and (-5,0)
galina1969 [7]

Answer:

5\sqrt{2}

Step-by-step explanation:

Calculate the distance between the points using the distance formula

d = √ (x₂ - x₁ )² + (y₂ - y₁ )²

with (x₁, y₁ ) = (0, 5) and (x₂, y₂ ) = (- 5, 0)

d = \sqrt{(-5-0)^2+(0-5)^2}

  = \sqrt{(-5)^2+(-5)^2}

  = \sqrt{25+25} = \sqrt{50} = 5\sqrt{2} ← exact value

5 0
3 years ago
How to solve this trig
n200080 [17]

Hi there!

To find the Trigonometric Equation, we have to isolate sin, cos, tan, etc. We are also given the interval [0,2π).

<u>F</u><u>i</u><u>r</u><u>s</u><u>t</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

What we have to do is to isolate cos first.

\displaystyle  \large{ cos \theta =  -  \frac{1}{2} }

Then find the reference angle. As we know cos(π/3) equals 1/2. Therefore π/3 is our reference angle.

Since we know that cos is negative in Q2 and Q3. We will be using π + (ref. angle) for Q3. and π - (ref. angle) for Q2.

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>2</u>

\displaystyle \large{ \pi -  \frac{ \pi}{3}  =  \frac{3 \pi}{3}  -  \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{2 \pi}{3} }

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi  +   \frac{ \pi}{3}  =  \frac{3 \pi}{3}   +   \frac{  \pi}{3} } \\  \displaystyle \large \boxed{ \frac{4 \pi}{3} }</u>

Both values are apart of the interval. Hence,

\displaystyle \large \boxed{ \theta =  \frac{2 \pi}{3} , \frac{4 \pi}{3} }

<u>S</u><u>e</u><u>c</u><u>o</u><u>n</u><u>d</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u>

Isolate sin(4 theta).

\displaystyle \large{sin 4 \theta =  -  \frac{1}{ \sqrt{2} } }

Rationalize the denominator.

\displaystyle \large{sin4 \theta =  -  \frac{ \sqrt{2} }{2} }

The problem here is 4 beside theta. What we are going to do is to expand the interval.

\displaystyle \large{0 \leqslant  \theta < 2 \pi}

Multiply whole by 4.

\displaystyle \large{0 \times 4 \leqslant  \theta \times 4 < 2 \pi \times 4} \\  \displaystyle \large \boxed{0 \leqslant 4 \theta < 8 \pi}

Then find the reference angle.

We know that sin(π/4) = √2/2. Hence π/4 is our reference angle.

sin is negative in Q3 and Q4. We use π + (ref. angle) for Q3 and 2π - (ref. angle for Q4.)

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>3</u>

<u>\displaystyle \large{ \pi +  \frac{ \pi}{4}  =  \frac{ 4 \pi}{4}  +  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{  \frac{5 \pi}{4} }</u>

<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{2 \pi -  \frac{ \pi}{4}  =  \frac{8 \pi}{4}  -  \frac{ \pi}{4} } \\  \displaystyle \large \boxed{ \frac{7 \pi}{4} }

Both values are in [0,2π). However, we exceed our interval to < 8π.

We will be using these following:-

\displaystyle \large{ \theta + 2 \pi k =  \theta \:  \:  \:  \:  \:  \sf{(k  \:  \: is \:  \: integer)}}

Hence:-

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>3</u>

\displaystyle \large{ \frac{5 \pi}{4}  + 2 \pi =  \frac{13 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 4\pi =  \frac{21 \pi}{4} } \\  \displaystyle \large{ \frac{5 \pi}{4}  + 6\pi =  \frac{29 \pi}{4} }

We cannot use any further k-values (or k cannot be 4 or higher) because it'd be +8π and not in the interval.

<u>F</u><u>o</u><u>r</u><u> </u><u>Q</u><u>4</u>

\displaystyle \large{ \frac{ 7 \pi}{4}  + 2 \pi =  \frac{15 \pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 4 \pi =  \frac{23\pi}{4} } \\  \displaystyle \large{ \frac{ 7 \pi}{4}  + 6 \pi =  \frac{31 \pi}{4} }

Therefore:-

\displaystyle \large{4 \theta =  \frac{5 \pi}{4} , \frac{7 \pi}{4} , \frac{13\pi}{4} , \frac{21\pi}{4} , \frac{29\pi}{4}, \frac{15 \pi}{4} , \frac{23\pi}{4} , \frac{31\pi}{4}  }

Then we divide all these values by 4.

\displaystyle \large \boxed{\theta =  \frac{5 \pi}{16} , \frac{7 \pi}{16} , \frac{13\pi}{16} , \frac{21\pi}{16} , \frac{29\pi}{16}, \frac{15 \pi}{16} , \frac{23\pi}{16} , \frac{31\pi}{16}  }

Let me know if you have any questions!

3 0
3 years ago
What is the sum of the first five terms in the series 7+12+17+..?
nirvana33 [79]
7 + 12 + 17 + 22 + 27 = ( 7 + 27 ) + ( 12 + 22 ) + ( 34 / 2 ) = ( 34 / 1 ) + ( 34 / 1 ) + ( 34 / 2 ) = ( 68 / 2 ) + ( 68 / 2 ) + ( 34 / 2 ) = 170 / 2 = 85 .
3 0
3 years ago
Other questions:
  • Which point is on the graph of f(x)=6x?
    12·2 answers
  • Find the product of 6/9 and 3/8 . Express your answer in simplest form.
    8·2 answers
  • FAST ANSWERS ONLY PLEASE HELP
    5·1 answer
  • On the first day of a measles outbreak at a school, 5 students were identified to have the measles. Each day for the following t
    12·1 answer
  • Noah visits different states every summer. This summer, he started with 2 states already visited and visits 6 states per day. Wr
    12·1 answer
  • Two rectangular prisms each have a surface area of 600 square inches. What are the possible dimensions of the prism?
    13·2 answers
  • Complete the table.
    6·1 answer
  • The response to a question has three alternatives: A, B, and C. A sample of 120 responses provides 60 A, 12 B, and 48 C. Show th
    9·1 answer
  • 25 points pluss brainliest!!! math.
    13·1 answer
  • Amira decides to estimate the volume of an apple by modeling it as a sphere. She measures its circumference as 43.4 cm. Find the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!