Answer:
This is known as a Galilean transformation where
V' = V - U
Where the primed frame is the Earth frame and the unprimed frame is the frame moving with respect to the moving frame
V - speed of object in the unprimed frame
U - speed of primed frame with respect to the unprimed frame
Here we have:
V = -15 m/s speed of ball in the moving frame (the truck)
U = -20 m/s speed of primed (rest) frame with respect to moving frame
So V' = -15 - (-20) = 5 m/s
It may help if you draw a vector representing the moving frame and then add
a vector representing the speed of the ball in the moving frame.
Answer:
Explanation:
Given
Diameter of Pulley=10.4 cm
mass of Pulley(m)=2.3 kg
mass of book
height(h)=1 m
time taken=0.64 s


![a=4.88 m/s^2and [tex]a=\alpha r](https://tex.z-dn.net/?f=a%3D4.88%20m%2Fs%5E2%3C%2Fp%3E%3Cp%3Eand%20%5Btex%5Da%3D%5Calpha%20r)
where
is angular acceleration of pulley


And Tension in Rope


T=8.364 N
and Tension will provide Torque




Thus mass is uniformly distributed or some more towards periphery of Pulley
<span>Like charges repel and opposite charges attract.
The further away two charged objects are the weaker the electrical force between them.
The closer two charged objects are the stronger the electrical force between them.
Hope this helps :)</span>
Answer: 1.176×10^-3 s
Explanation: The time constant formulae for an RC circuit is given below as
t =RC
Where t = time constant , R = magnitude of resistance = 21 ohms , C = capacitance of capacitor = 56 uf = 56×10^-6 F
t = 56×10^-6 × 21
t = 1176×10^-6
t = 1.176×10^-3 s
I have absolutely no clue