Answer:
The center of mass of the two-ball system is 7.05 m above ground.
Explanation:
<u>Motion of 0.50 kg ball:</u>
Initial speed, u = 0 m/s
Time = 2 s
Acceleration = 9.81 m/s²
Initial height = 25 m
Substituting in equation s = ut + 0.5 at²
s = 0 x 2 + 0.5 x 9.81 x 2² = 19.62 m
Height above ground = 25 - 19.62 = 5.38 m
<u>Motion of 0.25 kg ball:</u>
Initial speed, u = 15 m/s
Time = 2 s
Acceleration = -9.81 m/s²
Substituting in equation s = ut + 0.5 at²
s = 15 x 2 - 0.5 x 9.81 x 2² = 10.38 m
Height above ground = 10.38 m
We have equation for center of gravity

m₁ = 0.50 kg
x₁ = 5.38 m
m₂ = 0.25 kg
x₂ = 10.38 m
Substituting

The center of mass of the two-ball system is 7.05 m above ground.
The answer is D. Electric resistance increases with an increase in the length of a wire and as a result current flow decreases. There is a direct relationship between the length of the wire and the resistance. The longer the wire, the more resistance there will be. Additionally, from Ohm's Law, current is inversely proportional to resistance. This means as the current increases, resistance decreases or vice versa.
Answer:
Option (c).
Explanation:
An object when when projected at an angle, will have some horizontal velocity and vertical velocity such that,

is the angle of projection
The horizontal component of the projectile remains the same because there is no horizontal motion. Vertical component changes at every point.
As a projectile falls, vertical velocity increases in magnitude, horizontal velocity stays the same
.