Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Answer:
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
1 mole of hydrogen
=
atoms
17.5 mole of hydrogen
=
atoms
There are
atoms of hydrogen are there in
35.0 grams of hydrogen gas.
The balanced net reactiion for the following half cells will be
Sn + Cr²⁺ ---> Sn²⁺ + Cr
<h3>What are
Half cells ?</h3>
A half cell is one of the two electrodes of an electrochemical cell.
An electrochemical cell comprises two half cells, where every half cell contains an electrode and an electrolyte.
A salt bridge or direct contact is needed to connect two half cells.
The balanced net reactiion for the given half cells will be
Sn + Cr²⁺ ---> Sn²⁺ + Cr
Learn more about Half cell here ;
brainly.com/question/1313684
#SPJ1
Ignition wires make it more accurate because it will cook it faster
stirrer would have the less results of fast
a sealed bomb may cook it fast but you would have to be careful and don't mess up